io.rtron.math.geometry.euclidean.twod.curve.SpiralSegment2D.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rtron-math Show documentation
Show all versions of rtron-math Show documentation
Component 'rtron-math' of rtron.
The newest version!
/*
* Copyright 2019-2022 Chair of Geoinformatics, Technical University of Munich
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.rtron.math.geometry.euclidean.twod.curve
import com.github.kittinunf.result.Result
import com.github.kittinunf.result.map
import io.rtron.math.analysis.function.univariate.pure.LinearFunction
import io.rtron.math.geometry.curved.oned.point.CurveRelativeVector1D
import io.rtron.math.geometry.euclidean.twod.Pose2D
import io.rtron.math.geometry.euclidean.twod.Rotation2D
import io.rtron.math.geometry.euclidean.twod.point.Vector2D
import io.rtron.math.range.BoundType
import io.rtron.math.range.Range
import io.rtron.math.transform.Affine2D
import io.rtron.math.transform.AffineSequence2D
import io.rtron.std.handleFailure
/**
* Spiral curve segment within a defined [domain] that is given by the [curvatureFunction].
* See wikipedia article on [Euler spiral](https://en.wikipedia.org/wiki/Euler_spiral).
*
* @param curvatureFunction describes the curvature as a function of the curvePosition
* @param endBoundType bound type of the curve segment's end
*
*/
class SpiralSegment2D(
private val curvatureFunction: LinearFunction,
override val tolerance: Double,
override val affineSequence: AffineSequence2D = AffineSequence2D.EMPTY,
endBoundType: BoundType = BoundType.OPEN
) : AbstractCurve2D() {
// Properties and Initializers
private val lowerDomainEndpoint =
curvatureFunction.domain.lowerEndpointResult().handleFailure { throw it.error }
private val upperDomainEndpoint =
curvatureFunction.domain.upperEndpointResult().handleFailure { throw it.error }
override val domain: Range =
Range.closedX(lowerDomainEndpoint, upperDomainEndpoint, endBoundType)
init {
require(lowerDomainEndpoint == 0.0) { "Lower endpoint of domain must be zero (for moving the spiral segment, the affine sequence is preferred)." }
require(length.isFinite()) { "Length value must be finite." }
require(length > tolerance) { "Length value must be greater than zero and the tolerance threshold." }
require(curvatureFunction.slope.isFinite()) { "Curvature slope must be finite." }
require(curvatureFunction.slope != 0.0) { "Curvature slope must not be zero (if it's zero use a line or an arc segment)." }
}
private val _spiral = Spiral2D(curvatureFunction.slope)
private val _lengthStart =
curvatureFunction.startValue.handleFailure { throw it.error } / curvatureFunction.slope
private val _spiralPoseStart = _spiral.calculatePose(_lengthStart)
// Methods
override fun calculatePointLocalCSUnbounded(curveRelativePoint: CurveRelativeVector1D):
Result = calculatePoseLocalCS(curveRelativePoint).map { it.point }
override fun calculateRotationLocalCSUnbounded(curveRelativePoint: CurveRelativeVector1D):
Result = calculatePoseLocalCS(curveRelativePoint).map { it.rotation }
private fun calculatePoseLocalCS(curveRelativePoint: CurveRelativeVector1D):
Result {
val poseOnUnitSpiral = _spiral.calculatePose(_lengthStart + curveRelativePoint.curvePosition)
val poseOnUnitSpiralStartingAtOrigin = Affine2D.of(_spiralPoseStart).inverseTransform(poseOnUnitSpiral)
return Result.success(poseOnUnitSpiralStartingAtOrigin)
}
}
fun LinearFunction.Companion.ofSpiralCurvature(curvatureStart: Double, curvatureEnd: Double, length: Double): LinearFunction =
ofInclusiveInterceptAndPoint(curvatureStart, length, curvatureEnd)
© 2015 - 2025 Weber Informatics LLC | Privacy Policy