org.apache.spark.sql.avro.confluent.ConfluentAvroDataToCatalyst.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of spark-extensions_2.11 Show documentation
Show all versions of spark-extensions_2.11 Show documentation
Spark extensions for SmartDataLakeBuilder
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.avro.confluent
import java.nio.ByteBuffer
import org.apache.avro.generic.GenericDatumReader
import org.apache.avro.io.{BinaryDecoder, DecoderFactory}
import org.apache.spark.sql.avro.AvroDeserializer
import org.apache.spark.sql.catalyst.expressions.{ExpectsInputTypes, Expression, UnaryExpression}
import org.apache.spark.sql.catalyst.expressions.codegen.{CodeGenerator, CodegenContext, ExprCode}
import org.apache.spark.sql.types.{AbstractDataType, BinaryType, DataType}
import scala.collection.mutable
// copied from org.apache.spark.sql.avro.*
case class ConfluentAvroDataToCatalyst(child: Expression, subject: String, confluentHelper: ConfluentClient)
extends UnaryExpression with ExpectsInputTypes {
override def inputTypes: Seq[AbstractDataType] = Seq(BinaryType)
override lazy val dataType: DataType = tgt.dataType
override def nullable: Boolean = true
// prepare reader and deserializer for avro schema
case class DeserializerTools(dataType: DataType, schemaId: Int, reader: GenericDatumReader[Any], deserializer: AvroDeserializer)
@transient private lazy val tgt = {
// Avro schema is not serializable. We must be careful to not store it in an attribute of the class.
val (schemaId, schema) = confluentHelper.getLatestSchemaFromConfluent(subject)
val dataType = MySchemaConverters.toSqlType(schema).dataType
val reader = new GenericDatumReader[Any](schema)
val deserializer = new AvroDeserializer(schema, dataType)
DeserializerTools(dataType, schemaId, reader, deserializer)
}
// To decode a message we need to use the schema referenced by the message. Therefore we might need different deserializers.
@transient private lazy val deserializers = mutable.Map(tgt.schemaId -> tgt.deserializer)
@transient private var decoder: BinaryDecoder = _
@transient private var result: Any = _
override def nullSafeEval(input: Any): Any = {
val binary = input.asInstanceOf[Array[Byte]]
val (schemaId,avroMsg) = parseConfluentMsg(binary)
val (_,msgSchema) = confluentHelper.getSchemaFromConfluent(schemaId)
decoder = DecoderFactory.get().binaryDecoder(avroMsg, 0, avroMsg.length, decoder)
result = tgt.reader.read(result, decoder)
deserializers.getOrElseUpdate(schemaId, new AvroDeserializer(msgSchema, dataType))
.deserialize(result)
}
override def prettyName: String = "from_confluent_avro"
override protected def doGenCode(ctx: CodegenContext, ev: ExprCode): ExprCode = {
val expr = ctx.addReferenceObj("this", this)
defineCodeGen(ctx, ev, input =>
s"(${CodeGenerator.boxedType(dataType)})$expr.nullSafeEval($input)")
}
def parseConfluentMsg(msg:Array[Byte]): (Int,Array[Byte]) = {
val msgBuffer = ByteBuffer.wrap(msg)
val magicByte = msgBuffer.get
require(magicByte == confluentHelper.CONFLUENT_MAGIC_BYTE, "Magic byte not present at start of confluent message!")
val schemaId = msgBuffer.getInt
val avroMsg = msg.slice(msgBuffer.position, msgBuffer.limit)
//return
(schemaId, avroMsg)
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy