All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.gemstone.gemfire.internal.concurrent.CustomEntryConcurrentHashMap Maven / Gradle / Ivy

There is a newer version: 2.0-BETA
Show newest version
/*
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/licenses/publicdomain
 */

/*
 * Customized version for GemFireXD distributed data platform.
 *
 * Portions Copyright (c) 2010-2015 Pivotal Software, Inc. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you
 * may not use this file except in compliance with the License. You
 * may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied. See the License for the specific language governing
 * permissions and limitations under the License. See accompanying
 * LICENSE file.
 */
/**
 * ConcurrentHashMap implementation adapted from JSR 166 backport
 * (http://backport-jsr166.sourceforge.net) JDK5 version release 3.1
 * with modifications to use generics where appropriate:
 * backport-util-concurrent-Java50-3.1-src.tar.gz 
 *
 * Primary change is to allow HashEntry be an interface so that custom HashEntry
 * implementations can be plugged in. These HashEntry objects are now assumed to
 * be immutable in the sense that they cannot and should not be cloned in a
 * rehash, and the rehash mechanism has been recoded using locking for that. For
 * GemFire/GemFireXD, this is now used to plugin the RegionEntry implementation
 * directly as a HashEntry instead of having it as a value and then HashEntry as
 * a separate object having references to key/value which reduces the entry
 * overhead substantially. Other change is to add a "create" method that creates
 * a new object using the {@link MapCallback} interface only if required unlike
 * "putIfAbsent" that requires a pre-built object that may ultimately be thrown
 * away. Also added a "removeConditionally" method that allows for evaluation of
 * an arbitrary condition before removal from the map (unlike the normal
 * "remove" that can only check for equality with a provided object). In
 * addition, the segments are now locked using read-write locks. File has been
 * reformatted to conform to GemStone conventions.
 * GemStone additions have been marked with "GemStone addition".
 * GemStone changes have been marked with "GemStone change(s)".
 */

package com.gemstone.gemfire.internal.concurrent;

import java.io.IOException;
import java.io.Serializable;
import java.util.AbstractCollection;
import java.util.AbstractMap;
import java.util.AbstractSet;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Enumeration;
import java.util.IdentityHashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.RejectedExecutionException;

import com.gemstone.gemfire.CancelException;
import com.gemstone.gemfire.distributed.internal.InternalDistributedSystem;
import com.gemstone.gemfire.internal.cache.locks.NonReentrantReadWriteLock;
import com.gemstone.gemfire.internal.cache.wan.GatewaySenderEventImpl;
import com.gemstone.gemfire.internal.cache.BucketRegion;
import com.gemstone.gemfire.internal.cache.BucketRegionIndexCleaner;
import com.gemstone.gemfire.internal.cache.CacheObserver;
import com.gemstone.gemfire.internal.cache.CacheObserverHolder;
import com.gemstone.gemfire.internal.cache.LocalRegion;
import com.gemstone.gemfire.internal.cache.OffHeapRegionEntry;
import com.gemstone.gemfire.internal.cache.RegionEntry;
import com.gemstone.gemfire.internal.offheap.OffHeapRegionEntryHelper;
import com.gemstone.gemfire.internal.size.SingleObjectSizer;
import com.gemstone.gemfire.internal.cache.AbstractRegionEntry;

import edu.umd.cs.findbugs.annotations.SuppressFBWarnings;

/**
 * A hash table supporting full concurrency of retrievals and adjustable
 * expected concurrency for updates. This class obeys the same functional
 * specification as {@link java.util.Hashtable}, and includes versions of
 * methods corresponding to each method of Hashtable. However, even
 * though all operations are thread-safe, retrieval operations do not
 * entail locking, and there is not any support for locking the entire
 * table in a way that prevents all access. This class is fully interoperable
 * with Hashtable in programs that rely on its thread safety but not on
 * its synchronization details.
 * 
 * 

* Retrieval operations (including get) generally do not block, so may * overlap with update operations (including put and remove). * Retrievals reflect the results of the most recently completed update * operations holding upon their onset. For aggregate operations such as * putAll and clear, concurrent retrievals may reflect * insertion or removal of only some entries. Similarly, Iterators and * Enumerations return elements reflecting the state of the hash table at some * point at or since the creation of the iterator/enumeration. They do * not throw {@link java.util.ConcurrentModificationException}. * However, iterators are designed to be used by only one thread at a time. * *

* The allowed concurrency among update operations is guided by the optional * concurrencyLevel constructor argument (default 16), which * is used as a hint for internal sizing. The table is internally partitioned to * try to permit the indicated number of concurrent updates without contention. * Because placement in hash tables is essentially random, the actual * concurrency will vary. Ideally, you should choose a value to accommodate as * many threads as will ever concurrently modify the table. Using a * significantly higher value than you need can waste space and time, and a * significantly lower value can lead to thread contention. But overestimates * and underestimates within an order of magnitude do not usually have much * noticeable impact. A value of one is appropriate when it is known that only * one thread will modify and all others will only read. Also, resizing this or * any other kind of hash table is a relatively slow operation, so, when * possible, it is a good idea to provide estimates of expected table sizes in * constructors. * *

* This class and its views and iterators implement all of the optional * methods of the {@link Map} and {@link Iterator} interfaces. * *

* Like {@link java.util.Hashtable} but unlike {@link java.util.HashMap}, this * class does not allow null to be used as a key or value. * *

* This class is a member of the Java Collections Framework. * * @since 1.5 * @author Doug Lea * @param * the type of keys maintained by this map * @param * the type of mapped values */ public class CustomEntryConcurrentHashMap extends AbstractMap implements ConcurrentMap, Serializable { private static final long serialVersionUID = -7056732555635108300L; /* * The basic strategy is to subdivide the table among Segments, * each of which itself is a concurrently readable hash table. */ /* ---------------- Constants -------------- */ /** * The default initial capacity for this table, used when not otherwise * specified in a constructor. */ public static final int DEFAULT_INITIAL_CAPACITY = 16; /** * The default load factor for this table, used when not otherwise specified * in a constructor. */ public static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The default concurrency level for this table, used when not otherwise * specified in a constructor. */ public static final int DEFAULT_CONCURRENCY_LEVEL = 16; /** * The maximum capacity, used if a higher value is implicitly specified by * either of the constructors with arguments. MUST be a power of two <= 1<<30 * to ensure that entries are indexable using ints. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The maximum number of segments to allow; used to bound constructor * arguments. */ static final int MAX_SEGMENTS = 1 << 16; // slightly conservative /** * Number of unsynchronized retries in size and containsValue methods before * resorting to locking. This is used to avoid unbounded retries if tables * undergo continuous modification which would make it impossible to obtain an * accurate result. */ static final int RETRIES_BEFORE_LOCK = 2; /* ---------------- Fields -------------- */ /** * Mask value for indexing into segments. The upper bits of a key's hash code * are used to choose the segment. */ final int segmentMask; /** * Shift value for indexing within segments. */ final int segmentShift; /** * The segments, each of which is a specialized hash table */ final Segment[] segments; /** * {@link HashEntryCreator} for the map to create {@link HashEntry}s. */ final HashEntryCreator entryCreator; /** * If true then use equals for comparing key and value equality else use * reference-equality like an {@link IdentityHashMap}. */ final boolean compareValues; transient Set keySet; transient Set> entrySet; transient Set> reusableEntrySet; // GemStone addition transient Collection values; /* ---------------- Small Utilities -------------- */ public static final int keyHash(final Object o, final boolean compareValues) { return compareValues ? o.hashCode() : System.identityHashCode(o); } /** * Returns the segment that should be used for key with given hash * * @param h * the hash code for the key * @return the segment */ final Segment segmentFor(int h) { if (this.segmentMask == 0) { return this.segments[0]; } h = THashParameters.hash(h); return this.segments[(h >>> this.segmentShift) & this.segmentMask]; } /* ---------------- Inner Classes -------------- */ // GemStone addition // GemStone changed HashEntry to be an interface with original HashEntry // as the default implementation HashEntryImpl. /** * [sumedh] Interface for ConcurrentHashMap list entry. Note that this is * never exported out as a user-visible Map.Entry. * * Made this public so RegionEntries can directly implement this to reduce * memory overhead of separate {@link HashEntry} objects for each entry in the * map. */ public static interface HashEntry { /** * Get the key object for this entry. */ K getKey(); /** * Get a copy of the key object for this entry to be provided to external * callers for implementations that do not maintain a separate key object * (e.g. in GemFireXD). */ K getKeyCopy(); /** * Return true if the entry's key is equal to k. * GemFire addition to deal with inline keys. */ boolean isKeyEqual(Object k); /** * Get the value for this entry. */ V getMapValue(); /** * Set the value for this entry. */ void setMapValue(V newValue); /** * Get the hash value for this entry. */ int getEntryHash(); /** * Get the next entry, if any, in the linear chain. */ HashEntry getNextEntry(); /** * Set the next entry in the linear chain. */ void setNextEntry(HashEntry n); } /** * ConcurrentHashMap list entry. Note that this is never exported out as a * user-visible Map.Entry. * * Because the value field is volatile, not final, it is legal wrt the Java * Memory Model for an unsynchronized reader to see null instead of initial * value when read via a data race. Although a reordering leading to this is * not likely to ever actually occur, the Segment.readValueUnderLock method is * used as a backup in case a null (pre-initialized) value is ever seen in an * unsynchronized access method. */ static final class HashEntryImpl implements HashEntry { protected final K key; protected final int hash; protected volatile V value; protected HashEntry next; private final HashEntry wrappedEntry; HashEntryImpl(final K key, final int hash, final HashEntry next, final V value, final HashEntry wrappedEntry) { this.key = key; this.hash = hash; this.next = next; this.value = value; this.wrappedEntry = wrappedEntry; } /** * @see CustomEntryConcurrentHashMap.HashEntry#getKey() */ public final K getKey() { return this.key; } /** * @see CustomEntryConcurrentHashMap.HashEntry#getKeyCopy() */ public final K getKeyCopy() { // HashEntryImpl may be temporarily wrapping the result of another // HashEntry.getKey() during rehash copy return (this.wrappedEntry == null) ? this.key : this.wrappedEntry .getKeyCopy(); } /** * @see CustomEntryConcurrentHashMap.HashEntry#getMapValue() */ public final V getMapValue() { return this.value; } /** * @see CustomEntryConcurrentHashMap.HashEntry#setMapValue(Object) */ public final void setMapValue(V newValue) { this.value = newValue; } /** * @see CustomEntryConcurrentHashMap.HashEntry#getEntryHash() */ public final int getEntryHash() { return this.hash; } /** * @see CustomEntryConcurrentHashMap.HashEntry#getNextEntry() */ public final HashEntry getNextEntry() { return this.next; } /** * @see CustomEntryConcurrentHashMap.HashEntry#setNextEntry */ public final void setNextEntry(final HashEntry n) { this.next = n; } @Override public boolean isKeyEqual(Object k) { return k.equals(getKey()); } } /** * Interface to enable creation of new {@link HashEntry} objects by caller. * This can be used, for example, to return GemFire RegionEntries directly. */ public static interface HashEntryCreator { /** * Create a new {@link HashEntry} given the key, hash, value and next * element. */ public HashEntry newEntry(K key, int hash, HashEntry next, V value); /** * Get the hashCode for given key object. */ public int keyHashCode(Object key, boolean compareValues); } // End GemStone addition /** * Segments are specialized versions of hash tables. This subclasses from * ReentrantLock opportunistically, just to simplify some locking and avoid * separate construction. */ static class Segment extends NonReentrantReadWriteLock implements MapResult, Serializable { /* * Segments maintain a table of entry lists that are ALWAYS * kept in a consistent state, so can be read without locking. * Next fields of nodes are immutable (final). All list * additions are performed at the front of each bin. This * makes it easy to check changes, and also fast to traverse. * When nodes would otherwise be changed, new nodes are * created to replace them. This works well for hash tables * since the bin lists tend to be short. (The average length * is less than two for the default load factor threshold.) * * Read operations can thus proceed without locking, but rely * on selected uses of volatiles to ensure that completed * write operations performed by other threads are * noticed. For most purposes, the "count" field, tracking the * number of elements, serves as that volatile variable * ensuring visibility. This is convenient because this field * needs to be read in many read operations anyway: * * - All (unsynchronized) read operations must first read the * "count" field, and should not look at table entries if * it is 0. * * - All (synchronized) write operations should write to * the "count" field after structurally changing any bin. * The operations must not take any action that could even * momentarily cause a concurrent read operation to see * inconsistent data. This is made easier by the nature of * the read operations in Map. For example, no operation * can reveal that the table has grown but the threshold * has not yet been updated, so there are no atomicity * requirements for this with respect to reads. * * As a guide, all critical volatile reads and writes to the * count field are marked in code comments. */ private static final long serialVersionUID = -6972364566212065192L; /** * The number of elements in this segment's region. */ transient volatile int count; /** * Number of updates that alter the size of the table. This is used during * bulk-read methods to make sure they see a consistent snapshot: If * modCounts change during a traversal of segments computing size or * checking containsValue, then we might have an inconsistent view of state * so (usually) must retry. */ transient int modCount; /** * The table is rehashed when its size exceeds this threshold. (The value of * this field is always (int)(capacity * * loadFactor).) */ transient int threshold; /** * The per-segment table. */ transient volatile HashEntry[] table; /** * The load factor for the hash table. Even though this value is same for * all segments, it is replicated to avoid needing links to outer object. * * @serial */ final float loadFactor; // GemStone addition /** * {@link HashEntryCreator} for the map to create {@link HashEntry}s. */ final HashEntryCreator entryCreator; /** * Lock used when updating the {@link HashEntry#getNextEntry()} link of an * entry. */ final NonReentrantReadWriteLock listUpdateLock; /** for {@link MapResult} */ boolean newValueInsert; // End GemStone addition Segment(final int initialCapacity, final float lf, final HashEntryCreator entryCreator) { this.loadFactor = lf; this.entryCreator = entryCreator; this.listUpdateLock = new NonReentrantReadWriteLock(); setTable(Segment. newEntryArray(initialCapacity)); } @SuppressWarnings("unchecked") static Segment[] newArray(final int i) { return new Segment[i]; } // GemStone added the method below @SuppressWarnings("unchecked") static HashEntry[] newEntryArray(final int size) { return new HashEntry[size]; } /** * Sets table to new HashEntry array. Call only while holding lock or in * constructor. */ final void setTable(final HashEntry[] newTable) { this.threshold = (int)(newTable.length * this.loadFactor); this.table = newTable; } /** * Returns properly casted first entry of bin for given hash. */ final HashEntry getFirst(final int hash) { final HashEntry[] tab = this.table; return tab[hash & (tab.length - 1)]; } /** * Reads value field of an entry under lock. Called if value field ever * appears to be null. This is possible only if a compiler happens to * reorder a HashEntry initialization with its table assignment, which is * legal under memory model but is not known to ever occur. */ final V readValueUnderLock(final HashEntry e) { attemptReadLock(-1); final V v = e.getMapValue(); releaseReadLock(); return v; } /** * Added for GemFire since it stores some keys inline. */ protected boolean equalityKeyCompare(final Object key, final HashEntry mapEntry) { return mapEntry.isKeyEqual(key); } protected boolean equalityCompare(final Object v1, final Object v2) { return v1.equals(v2); } protected boolean equalityCompareWithNulls(final Object v1, final Object v2) { if (v1 != v2) { if (v1 != null) { return v1.equals(v2); } return false; } return true; } /* Specialized implementations of map methods */ final V get(final Object key, final int hash) { if (this.count != 0) { // read-volatile // GemStone change to acquire the read lock on list updates this.listUpdateLock.attemptReadLock(-1); boolean lockAcquired = true; HashEntry e = getFirst(hash); try { while (e != null) { if (e.getEntryHash() == hash && equalityKeyCompare(key, e)) { final V v = e.getMapValue(); if (v != null) { return v; } this.listUpdateLock.releaseReadLock(); lockAcquired = false; return readValueUnderLock(e); // recheck } e = e.getNextEntry(); } } finally { if (lockAcquired) { this.listUpdateLock.releaseReadLock(); } } } return null; } final V getNoLock(final Object key, final int hash, final boolean lockListForRead) { if (this.count != 0) { // read-volatile // GemStone change to acquire the read lock on list updates if (lockListForRead) { this.listUpdateLock.attemptReadLock(-1); } HashEntry e = getFirst(hash); try { while (e != null) { if (e.getEntryHash() == hash && equalityKeyCompare(key, e)) { return e.getMapValue(); } e = e.getNextEntry(); } } finally { if (lockListForRead) { this.listUpdateLock.releaseReadLock(); } } } return null; } final boolean containsKey(final Object key, final int hash) { if (this.count != 0) { // read-volatile // GemStone change to acquire the read lock on list updates this.listUpdateLock.attemptReadLock(-1); HashEntry e = getFirst(hash); try { while (e != null) { if (e.getEntryHash() == hash && equalityKeyCompare(key, e)) { return true; } e = e.getNextEntry(); } } finally { this.listUpdateLock.releaseReadLock(); } } return false; } final boolean containsValue(final Object value) { if (this.count != 0) { // read-volatile // GemStone change to acquire the read lock on list updates NonReentrantReadWriteLock lock = this.listUpdateLock; RETRYLOOP: for (;;) { lock.attemptReadLock(-1); final HashEntry[] tab = this.table; final int len = tab.length; for (int i = 0; i < len; i++) { for (HashEntry e = tab[i]; e != null; e = e.getNextEntry()) { V v = e.getMapValue(); if (v == null) { // GemStone changes BEGIN // go back and retry from the very start with segment read lock lock.releaseReadLock(); lock = this; continue RETRYLOOP; /* (original code) v = readValueUnderLock(e); */ // GemStone changes END } if (equalityCompare(value, v)) { lock.releaseReadLock(); return true; } } } lock.releaseReadLock(); return false; } } return false; } final boolean replace(final K key, final int hash, final V oldValue, final V newValue) { attemptWriteLock(-1); try { HashEntry e = getFirst(hash); while (e != null && (e.getEntryHash() != hash || !equalityKeyCompare(key, e))) { e = e.getNextEntry(); } boolean replaced = false; if (e != null && equalityCompare(oldValue, e.getMapValue())) { replaced = true; e.setMapValue(newValue); } return replaced; } finally { releaseWriteLock(); } } final V replace(final K key, final int hash, final V newValue) { attemptWriteLock(-1); try { HashEntry e = getFirst(hash); while (e != null && (e.getEntryHash() != hash || !equalityKeyCompare(key, e))) { e = e.getNextEntry(); } V oldValue = null; if (e != null) { oldValue = e.getMapValue(); e.setMapValue(newValue); } return oldValue; } finally { releaseWriteLock(); } } final V put(final K key, final int hash, final V value, final boolean onlyIfAbsent) { attemptWriteLock(-1); try { int c = this.count; if (c++ > this.threshold) { rehash(); } final HashEntry[] tab = this.table; final int index = hash & (tab.length - 1); final HashEntry first = tab[index]; HashEntry e = first; while (e != null && (e.getEntryHash() != hash || !equalityKeyCompare(key, e))) { e = e.getNextEntry(); } final V oldValue; if (e != null) { oldValue = e.getMapValue(); if (!onlyIfAbsent) { e.setMapValue(value); } } else { oldValue = null; ++this.modCount; tab[index] = this.entryCreator.newEntry(key, hash, first, value); this.count = c; // write-volatile } return oldValue; } finally { releaseWriteLock(); } } // GemStone additions final V create(final K key, final int hash, final MapCallback valueCreator, final C context, final P createParams, final boolean lockForRead) { // TODO: This can be optimized by having a special lock implementation // that will allow upgrade from read to write lock atomically. This can // cause a deadlock if two readers try to simultaneously upgrade, so the // upgrade should be a tryLock that will fall back to the usual way if // unsuccessful. The advantage of that approach is that "equals" calls in // the list can be avoided completely if tryLock succeeds (i.e. presumably // the common case of no overlap on a segment concurrently). OTOH it will // not be as efficient when get succeeds without a read lock (existing // entry) that will not need to wait for any writers. final boolean requiresUpdate = valueCreator.requiresUpdateValue(); if (!requiresUpdate) { if (!lockForRead) { final V v = getNoLock(key, hash, true); if (v != null) { return v; } } else { attemptReadLock(-1); try { final V v = getNoLock(key, hash, false); if (v != null) { // invoke the callback before returning an existing value valueCreator.oldValueRead(v); return v; } } finally { releaseReadLock(); } } } attemptWriteLock(-1); try { int c = this.count; if (c++ > this.threshold) { rehash(); } final HashEntry[] tab = this.table; final int index = hash & (tab.length - 1); final HashEntry first = tab[index]; HashEntry e = first; while (e != null && (e.getEntryHash() != hash || !equalityKeyCompare(key, e))) { e = e.getNextEntry(); } V currentValue; if (e == null) { ++this.modCount; this.newValueInsert = true; currentValue = valueCreator .newValue(key, context, createParams, this); if (currentValue != null) { if (this.newValueInsert) { tab[index] = this.entryCreator.newEntry(key, hash, first, currentValue); this.count = c; // write-volatile } return currentValue; } else { return null; } } else { currentValue = e.getMapValue(); // invoke the callback before returning an existing value if (requiresUpdate) { V newValue = valueCreator.updateValue(key, currentValue, context, createParams); if (newValue == null) { // indicates removal from map removeNoLock(key, hash, MapCallback.NO_OBJECT_TOKEN, null, null, null); } else if (newValue != currentValue) { e.setMapValue(newValue); currentValue = newValue; } } else if (lockForRead) { valueCreator.oldValueRead(currentValue); } return currentValue; } } finally { releaseWriteLock(); } } final V get(final Object key, final int hash, final MapCallback readCallback) { attemptReadLock(-1); try { if (this.count != 0) { // read-volatile HashEntry e = getFirst(hash); while (e != null) { if (e.getEntryHash() == hash && equalityKeyCompare(key, e)) { final V v = e.getMapValue(); if (v != null) { if (readCallback != null) { readCallback.oldValueRead(v); } return v; } } e = e.getNextEntry(); } } } finally { releaseReadLock(); } return null; } // End GemStone additions final void rehash() { final HashEntry[] oldTable = this.table; final int oldCapacity = oldTable.length; if (oldCapacity >= MAXIMUM_CAPACITY) { return; } /* * Reclassify nodes in each list to new Map. Because we are * using power-of-two expansion, the elements from each bin * must either stay at same index, or move with a power of two * offset. We eliminate unnecessary node creation by catching * cases where old nodes can be reused because their next * fields won't change. Statistically, at the default * threshold, only about one-sixth of them need cloning when * a table doubles. The nodes they replace will be garbage * collectable as soon as they are no longer referenced by any * reader thread that may be in the midst of traversing table * right now. */ final HashEntry[] newTable = newEntryArray(oldCapacity << 1); this.threshold = (int)(newTable.length * this.loadFactor); final int sizeMask = newTable.length - 1; for (int i = 0; i < oldCapacity; i++) { // We need to guarantee that any existing reads of old Map can // proceed. So we cannot yet null out each bin. final HashEntry e = oldTable[i]; if (e != null) { final HashEntry next = e.getNextEntry(); final int idx = e.getEntryHash() & sizeMask; // Single node on list if (next == null) { newTable[idx] = e; } else { // Reuse trailing consecutive sequence at same slot HashEntry lastRun = e; int lastIdx = idx; for (HashEntry last = next; last != null; last = last .getNextEntry()) { final int k = last.getEntryHash() & sizeMask; if (k != lastIdx) { lastIdx = k; lastRun = last; } } newTable[lastIdx] = lastRun; // Clone all remaining nodes // GemStone changes BEGIN // update the next entry instead of cloning the nodes in newTable; // this is primarily because we don't want to change // the underlying RegionEntry that may be used elsewhere; // however we create new wrapper entries for old table so that // iterators can continue on old table without blocking updates // for indefinite periods HashEntryImpl newe, newp = null, newFirst = null; HashEntry nextp; //Bug 44155 - we need to clone all of the entries, not just //the entries leading up to lastRun, because the entries //in the last run may have their next pointers changed //by a later rehash. for (HashEntry p = e; p != null; p = nextp) { newe = new HashEntryImpl(p.getKey(), p.getEntryHash(), (nextp = p.getNextEntry()), p.getMapValue(), p); if (newp != null) { newp.setNextEntry(newe); } else { newFirst = newe; } newp = newe; } // take the listUpdate write lock before updating the next refs this.listUpdateLock.attemptWriteLock(-1); try { if (newFirst != null) { this.table[i] = newFirst; // deliberately using volatile write } for (HashEntry p = e; p != lastRun; p = nextp) { final int k = p.getEntryHash() & sizeMask; final HashEntry n = newTable[k]; nextp = p.getNextEntry(); p.setNextEntry(n); newTable[k] = p; } } finally { this.listUpdateLock.releaseWriteLock(); } /* (original code) for (HashEntry p = e; p != lastRun; p = p.next) { final int k = p.hash & sizeMask; final HashEntry n = newTable[k]; newTable[k] = this.entryCreator.newEntry(p.key, p.hash, n, p.value); } */ // GemStone changes END } } } this.table = newTable; } /** * Remove; match on key only if value null, else match both. */ // GemStone change // added "condition" and "removeParams" parameters final V remove(final Object key, final int hash, final Object value, final MapCallback condition, final C context, final P removeParams) { // End GemStone change attemptWriteLock(-1); try { return removeNoLock(key, hash, value, condition, context, removeParams); } finally { releaseWriteLock(); } } /** * Remove; match on key only if value null, else match both. */ // GemStone change // added "condition" and "removeParams" parameters @SuppressWarnings("unchecked") final V removeNoLock(final Object key, final int hash, final Object value, final MapCallback condition, final C context, final P removeParams) { // End GemStone change final int c = this.count - 1; final HashEntry[] tab = this.table; final int index = hash & (tab.length - 1); final HashEntry first = tab[index]; HashEntry e = first; // GemStone change // the entry previous to the matched one, if any HashEntry p = null; while (e != null && (e.getEntryHash() != hash || !equalityKeyCompare(key, e))) { e = e.getNextEntry(); if (p == null) { p = first; } else { p = p.getNextEntry(); } } V oldValue = null; if (e != null) { final V v = e.getMapValue(); // GemStone change Object newValue = null; // allow for passing in a null object for comparison during remove; // also invoke the provided condition to check for removal if ((value == MapCallback.NO_OBJECT_TOKEN || equalityCompareWithNulls( v, value)) && (condition == null || (newValue = condition .removeValue(key, value, v, context, removeParams)) == null)) { // End GemStone change oldValue = v; // All entries following removed node can stay in list, // but all preceding ones need to be cloned. ++this.modCount; // GemStone changes BEGIN // update the next entry instead of cloning the nodes // this is primarily because we don't want to change // the underlying RegionEntry that may be used elsewhere this.listUpdateLock.attemptWriteLock(-1); try { if (p == null) { tab[index] = e.getNextEntry(); } else { p.setNextEntry(e.getNextEntry()); } } finally { this.listUpdateLock.releaseWriteLock(); } /* (original code) HashEntry newFirst = e.next; for (HashEntry p = first; p != e; p = p.next) { newFirst = this.entryCreator.newEntry(p.key, p.hash, newFirst, p.value); } tab[index] = newFirst; */ this.count = c; // write-volatile } else if (newValue != MapCallback.ABORT_REMOVE_TOKEN && newValue != null) { // replace with newValue e.setMapValue((V)newValue); } } if (condition != null) { condition.postRemove(key, value, oldValue, context, removeParams); } // GemStone changes END return oldValue; } /** * GemStone added the clearedEntries param and the result */ final ArrayList> clear(ArrayList> clearedEntries) { if (this.count != 0) { attemptWriteLock(-1); try { final HashEntry[] tab = this.table; // GemStone changes BEGIN boolean collectEntries = clearedEntries != null; if (!collectEntries) { // see if we have a map with off-heap region entries for (HashEntry he : tab) { if (he != null) { collectEntries = he instanceof OffHeapRegionEntry; if (collectEntries) { clearedEntries = new ArrayList>(); } // after the first non-null entry we are done break; } } } final boolean checkForGatewaySenderEvent = OffHeapRegionEntryHelper.doesClearNeedToCheckForOffHeap(); final boolean skipProcessOffHeap = !collectEntries && !checkForGatewaySenderEvent; if (skipProcessOffHeap) { Arrays.fill(tab, null); } else { for (int i = 0; i < tab.length; i++) { HashEntry he = tab[i]; if (he == null) continue; tab[i] = null; if (collectEntries) { clearedEntries.add(he); } else { for (HashEntry p = he; p != null; p = p.getNextEntry()) { if (p instanceof RegionEntry) { // It is ok to call GatewaySenderEventImpl release without being synced // on the region entry. It will not create an orphan. GatewaySenderEventImpl.release(((RegionEntry) p)._getValue()); } } } } // GemStone changes END } ++this.modCount; this.count = 0; // write-volatile } finally { releaseWriteLock(); } } return clearedEntries; // GemStone change } /** * {@inheritDoc} */ @Override public void setNewValueCreated(boolean created) { this.newValueInsert = created; } /** * {@inheritDoc} */ @Override public boolean isNewValueCreated() { return this.newValueInsert; } } /** * Extension of {@link Segment} using reference-equality comparison for key, * value equality instead of equals method. * * @author swale * @since 7.0 */ static final class IdentitySegment extends Segment implements Serializable { private static final long serialVersionUID = 3086228147110819882L; IdentitySegment(final int initialCapacity, final float lf, final HashEntryCreator entryCreator) { super(initialCapacity, lf, entryCreator); } @SuppressWarnings("unchecked") static final IdentitySegment[] newArray(final int i) { return new IdentitySegment[i]; } @Override protected final boolean equalityKeyCompare(final Object key, final HashEntry mapEntry) { return key == mapEntry.getKey(); } @Override protected final boolean equalityCompare(final Object key, final Object mapKey) { return key == mapKey; } @Override protected final boolean equalityCompareWithNulls(final Object key, final Object mapKey) { return key == mapKey; } } /* ---------------- Public operations -------------- */ /** * Creates a new, empty map with the specified initial capacity, load factor * and concurrency level. * * @param initialCapacity * the initial capacity. The implementation performs internal sizing * to accommodate this many elements. * @param loadFactor * the load factor threshold, used to control resizing. Resizing may * be performed when the average number of elements per bin exceeds * this threshold. * @param concurrencyLevel * the estimated number of concurrently updating threads. The * implementation performs internal sizing to try to accommodate this * many threads. * @throws IllegalArgumentException * if the initial capacity is negative or the load factor or * concurrencyLevel are nonpositive. */ public CustomEntryConcurrentHashMap(final int initialCapacity, final float loadFactor, final int concurrencyLevel) { this(initialCapacity, loadFactor, concurrencyLevel, false, null); } // GemStone addition /** * Creates a new, empty map with the specified initial capacity, load factor * and concurrency level. * * @param initialCapacity * the initial capacity. The implementation performs internal sizing * to accommodate this many elements. * @param loadFactor * the load factor threshold, used to control resizing. Resizing may * be performed when the average number of elements per bin exceeds * this threshold. * @param concurrencyLevel * the estimated number of concurrently updating threads. The * implementation performs internal sizing to try to accommodate this * many threads. * @param isIdentityMap * if true then this will use reference-equality instead of equals * like an {@link IdentityHashMap} * @throws IllegalArgumentException * if the initial capacity is negative or the load factor or * concurrencyLevel are nonpositive. */ public CustomEntryConcurrentHashMap(final int initialCapacity, final float loadFactor, final int concurrencyLevel, final boolean isIdentityMap) { this(initialCapacity, loadFactor, concurrencyLevel, isIdentityMap, null); } /** * Creates a new, empty map with the specified initial capacity, load factor, * concurrency level and custom {@link HashEntryCreator}. * * @param initialCapacity * the initial capacity. The implementation performs internal sizing * to accommodate this many elements. * @param loadFactor * the load factor threshold, used to control resizing. Resizing may * be performed when the average number of elements per bin exceeds * this threshold. * @param concurrencyLevel * the estimated number of concurrently updating threads. The * implementation performs internal sizing to try to accommodate this * many threads. * @param isIdentityMap * if true then this will use reference-equality instead of equals * like an {@link IdentityHashMap} * @param entryCreator * a custom {@link HashEntryCreator} for creating the map entries * * @throws IllegalArgumentException * if the initial capacity is negative or the load factor or * concurrencyLevel are nonpositive. */ public CustomEntryConcurrentHashMap(int initialCapacity, final float loadFactor, int concurrencyLevel, final boolean isIdentityMap, HashEntryCreator entryCreator) { if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) { throw new IllegalArgumentException(); } if (concurrencyLevel > MAX_SEGMENTS) { concurrencyLevel = MAX_SEGMENTS; } // Find power-of-two sizes best matching arguments int sshift = 0; int ssize = 1; if (concurrencyLevel > 1) { while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1; } } this.segmentShift = 32 - sshift; this.segmentMask = ssize - 1; if (initialCapacity > MAXIMUM_CAPACITY) { initialCapacity = MAXIMUM_CAPACITY; } int c = initialCapacity / ssize; if (c * ssize < initialCapacity) { ++c; } int cap = 1; while (cap < c) { cap <<= 1; } if (entryCreator == null) { entryCreator = new DefaultHashEntryCreator(); } if (!isIdentityMap) { this.compareValues = true; this.segments = Segment.newArray(ssize); this.entryCreator = entryCreator; for (int i = 0; i < ssize; ++i) { this.segments[i] = new Segment(cap, loadFactor, entryCreator); } } else { this.compareValues = false; this.segments = IdentitySegment.newArray(ssize); this.entryCreator = entryCreator; for (int i = 0; i < ssize; ++i) { this.segments[i] = new IdentitySegment(cap, loadFactor, entryCreator); } } } static final class DefaultHashEntryCreator implements HashEntryCreator, Serializable { private static final long serialVersionUID = 3765680607280951726L; public final HashEntry newEntry(final K key, final int hash, final HashEntry next, final V value) { return new HashEntryImpl(key, hash, next, value, null); } public final int keyHashCode(final Object key, final boolean compareValues) { return keyHash(key, compareValues); } } // End GemStone addition /** * Creates a new, empty map with the specified initial capacity and load * factor and with the default concurrencyLevel (16). * * @param initialCapacity * The implementation performs internal sizing to accommodate this * many elements. * @param loadFactor * the load factor threshold, used to control resizing. Resizing may * be performed when the average number of elements per bin exceeds * this threshold. * @throws IllegalArgumentException * if the initial capacity of elements is negative or the load * factor is nonpositive * * @since 1.6 */ public CustomEntryConcurrentHashMap(final int initialCapacity, final float loadFactor) { this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL, false); } /** * Creates a new, empty map with the specified initial capacity, and with * default load factor (0.75) and concurrencyLevel (16). * * @param initialCapacity * the initial capacity. The implementation performs internal sizing * to accommodate this many elements. * @throws IllegalArgumentException * if the initial capacity of elements is negative. */ public CustomEntryConcurrentHashMap(final int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL, false); } /** * Creates a new, empty map with a default initial capacity (16), load factor * (0.75) and concurrencyLevel (16). */ public CustomEntryConcurrentHashMap() { this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL, false); } /** * Creates a new map with the same mappings as the given map. The map is * created with a capacity of 1.5 times the number of mappings in the given * map or 16 (whichever is greater), and a default load factor (0.75) and * concurrencyLevel (16). * * @param m * the map */ public CustomEntryConcurrentHashMap(final Map m) { this(Math.max((int)(m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL, false); putAll(m); } /** * Returns true if this map contains no key-value mappings. * * @return true if this map contains no key-value mappings */ @Override public final boolean isEmpty() { final Segment[] segments = this.segments; /* * We keep track of per-segment modCounts to avoid ABA * problems in which an element in one segment was added and * in another removed during traversal, in which case the * table was never actually empty at any point. Note the * similar use of modCounts in the size() and containsValue() * methods, which are the only other methods also susceptible * to ABA problems. */ final int[] mc = new int[segments.length]; int mcsum = 0; for (int i = 0; i < segments.length; ++i) { if (segments[i].count != 0) { return false; } else { mcsum += mc[i] = segments[i].modCount; } } // If mcsum happens to be zero, then we know we got a snapshot // before any modifications at all were made. This is // probably common enough to bother tracking. if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { if (segments[i].count != 0 || mc[i] != segments[i].modCount) { return false; } } } return true; } /** * Returns the number of key-value mappings in this map. If the map contains * more than Integer.MAX_VALUE elements, returns * Integer.MAX_VALUE. * * @return the number of key-value mappings in this map */ @Override @SuppressFBWarnings(value="UL_UNRELEASED_LOCK", justification="The lock() calls are followed by unlock() calls without finally-block. Leaving this as is because it's lifted from JDK code and we want to minimize changes.") public final int size() { final Segment[] segments = this.segments; long sum = 0; long check = 0; final int[] mc = new int[segments.length]; // Try a few times to get accurate count. On failure due to // continuous async changes in table, resort to locking. for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) { check = 0; sum = 0; int mcsum = 0; for (int i = 0; i < segments.length; ++i) { sum += segments[i].count; mcsum += mc[i] = segments[i].modCount; } if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { check += segments[i].count; if (mc[i] != segments[i].modCount) { check = -1; // force retry break; } } } if (check == sum) { break; } } if (check != sum) { // Resort to locking all segments sum = 0; for (int i = 0; i < segments.length; ++i) { segments[i].attemptReadLock(-1); } for (int i = 0; i < segments.length; ++i) { sum += segments[i].count; } for (int i = 0; i < segments.length; ++i) { segments[i].releaseReadLock(); } } if (sum > Integer.MAX_VALUE) { return Integer.MAX_VALUE; } else { return (int)sum; } } /** * Returns the value to which the specified key is mapped, or {@code null} if * this map contains no mapping for the key. * *

* More formally, if this map contains a mapping from a key {@code k} to a * value {@code v} such that {@code key.equals(k)}, then this method returns * {@code v}; otherwise it returns {@code null}. (There can be at most one * such mapping.) * * @throws NullPointerException * if the specified key is null */ @Override public final V get(final Object key) { // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).get(key, hash); } /** * Tests if the specified object is a key in this table. * * @param key * possible key * @return true if and only if the specified object is a key in this * table, as determined by the equals method; false * otherwise. * @throws NullPointerException * if the specified key is null */ @Override public final boolean containsKey(final Object key) { // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).containsKey(key, hash); } /** * Returns true if this map maps one or more keys to the specified * value. Note: This method requires a full internal traversal of the hash * table, and so is much slower than method containsKey. * * @param value * value whose presence in this map is to be tested * @return true if this map maps one or more keys to the specified * value * @throws NullPointerException * if the specified value is null */ @Override @SuppressFBWarnings(value="UL_UNRELEASED_LOCK", justification="Leaving this as is because it's lifted from JDK code and we want to minimize changes.") public final boolean containsValue(final Object value) { if (value == null) { throw new NullPointerException(); } // See explanation of modCount use above final Segment[] segments = this.segments; final int[] mc = new int[segments.length]; // Try a few times without locking for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) { int mcsum = 0; for (int i = 0; i < segments.length; ++i) { mcsum += mc[i] = segments[i].modCount; if (segments[i].containsValue(value)) { return true; } } boolean cleanSweep = true; if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { if (mc[i] != segments[i].modCount) { cleanSweep = false; break; } } } if (cleanSweep) { return false; } } // Resort to locking all segments for (int i = 0; i < segments.length; ++i) { segments[i].attemptReadLock(-1); } boolean found = false; try { for (int i = 0; i < segments.length; ++i) { if (segments[i].containsValue(value)) { found = true; break; } } } finally { for (int i = 0; i < segments.length; ++i) { segments[i].releaseReadLock(); } } return found; } /** * Legacy method testing if some key maps into the specified value in this * table. This method is identical in functionality to {@link #containsValue}, * and exists solely to ensure full compatibility with class * {@link java.util.Hashtable}, which supported this method prior to * introduction of the Java Collections framework. * * @param value * a value to search for * @return true if and only if some key maps to the value * argument in this table as determined by the equals method; * false otherwise * @throws NullPointerException * if the specified value is null */ public final boolean contains(final Object value) { return containsValue(value); } /** * Maps the specified key to the specified value in this table. Neither the * key nor the value can be null. * *

* The value can be retrieved by calling the get method with a key * that is equal to the original key. * * @param key * key with which the specified value is to be associated * @param value * value to be associated with the specified key * @return the previous value associated with key, or null * if there was no mapping for key * @throws NullPointerException * if the specified key or value is null */ @Override public final V put(final K key, final V value) { if (value == null) { throw new NullPointerException(); } // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).put(key, hash, value, false); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, or * null if there was no mapping for the key * @throws NullPointerException * if the specified key or value is null */ public final V putIfAbsent(final K key, final V value) { if (value == null) { throw new NullPointerException(); } // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).put(key, hash, value, true); } // GemStone addition /** * Create a given key, value mapping if the key does not exist in the map else * do nothing. The difference between this method and * {@link #putIfAbsent(Object, Object)} is that latter always acquires a write * lock on the segment which this acquires a write lock only if entry was not * found. In other words this method is more efficient for the case when * number of entries is small and same entries are being updated repeatedly. * * @return true if the key was successfully put in the map or false if there * was an existing mapping for the key in the map * * @throws NullPointerException * if the specified key is null */ public final boolean create(final K key, final V value) { // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); final Segment seg = segmentFor(hash); if (seg.containsKey(key, hash)) { return false; } return seg.put(key, hash, value, true) == null; } /** * Like {@link #putIfAbsent(Object, Object)} but creates the value only if * none present rather than requiring a passed in pre-created object that may * ultimately be thrown away. Also takes read lock on the segment, if * required, to provide better guarantees w.r.t. remove/replace that checks * against old value when the value may be changed structurally by reading * (e.g. a list as value changed after a call to this method). * * @param key * key with which the specified value is to be associated * @param valueCreator * factory object to create the value to be associated with the * specified key, if required * @param context * the context in which this method has been invoked and passed to * valueCreator {@link MapCallback#newValue} method to * create the new instance * @param createParams * parameters to be passed to the valueCreator * {@link MapCallback#newValue} method to create the new instance * @param lockForRead * if passed as true, then the read from the map prior to creation is * done under the segment read lock; this provides better guarantees * with respect to other threads that may be manipulating the value * object in place after reading from the map * * @return the previous value associated with the specified key, or the new * value obtained by invoking {@link MapCallback#newValue} if there * was no mapping for the key; this is paired with the segment read * lock * * @throws NullPointerException * if the specified key or value is null */ public final V create(final K key, final MapCallback valueCreator, final C context, final P createParams, final boolean lockForRead) { // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).create(key, hash, valueCreator, context, createParams, lockForRead); } /** * Returns the value to which the specified key is mapped, or {@code null} if * this map contains no mapping for the key. * *

* More formally, if this map contains a mapping from a key {@code k} to a * value {@code v} such that {@code key.equals(k)}, then this method returns * {@code v}; otherwise it returns {@code null}. (There can be at most one * such mapping.) * *

* This variant locks the segment for reading and if the given * {@link MapCallback} is non-null then its * {@link MapCallback#oldValueRead(Object)} method is invoked in the lock. * * @throws NullPointerException * if the specified key is null */ public final V get(final Object key, final MapCallback readCallback) { // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).get(key, hash, readCallback); } /** * Removes the entry for a key only if the given condition ( * {@link MapCallback#removeValue} returns null. If the value returned by * condition is {@link MapCallback#ABORT_REMOVE_TOKEN} then remove is not done * and for any other value a put is done instead of remove with the * returned value. This is equivalent to: * *

   * if (map.containsKey(key)
   *     && (val = condition.removeValue(map.get(key)) == null) {
   *   return map.remove(key);
   * }
   * else if (val != null && val != MapCallback.ABORT_REMOVE_TOKEN) {
   *   return map.put(key, val);
   * }
   * else {
   *   return null;
   * }
   * 
* * except that the action is performed atomically. * * @param key * key with which the specified value is associated * @param condition * {@link MapCallback#removeValue} is invoked and checked inside the * segment lock if removal should be done * @param context * the context in which this method has been invoked and passed to * condition {@link MapCallback#removeValue} method to * create the new instance * @param removeParams * parameters to be passed to the onSuccess parameter * * @return the previous value associated with key, or null * if there was no mapping for key * * @throws UnsupportedOperationException * if the remove operation is not supported by this map * @throws ClassCastException * if the key or value is of an inappropriate type for this map * (optional) * @throws NullPointerException * if the specified key or value is null, and this map does not * permit null keys or values (optional) */ public final V remove(final Object key, final MapCallback condition, final C context, final P removeParams) { // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).remove(key, hash, MapCallback.NO_OBJECT_TOKEN, condition, context, removeParams); } // End GemStone addition /** * Copies all of the mappings from the specified map to this one. These * mappings replace any mappings that this map had for any of the keys * currently in the specified map. * * @param m * mappings to be stored in this map */ @Override public final void putAll(final Map m) { for (final Map.Entry e : m.entrySet()) { put(e.getKey(), e.getValue()); } } /** * Removes the key (and its corresponding value) from this map. This method * does nothing if the key is not in the map. * * @param key * the key that needs to be removed * @return the previous value associated with key, or null * if there was no mapping for key * @throws NullPointerException * if the specified key is null */ @Override public final V remove(final Object key) { // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).remove(key, hash, MapCallback.NO_OBJECT_TOKEN, null, null, null); } /** * {@inheritDoc} * * @throws NullPointerException * if the specified key is null */ public final boolean remove(final Object key, final Object value) { if (value == null) { return false; } // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).remove(key, hash, value, null, null, null) != null; } /** * {@inheritDoc} * * @throws NullPointerException * if any of the arguments are null */ public final boolean replace(final K key, final V oldValue, final V newValue) { if (oldValue == null || newValue == null) { throw new NullPointerException(); } // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).replace(key, hash, oldValue, newValue); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, or * null if there was no mapping for the key * @throws NullPointerException * if the specified key or value is null */ public final V replace(final K key, final V value) { if (value == null) { throw new NullPointerException(); } // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).replace(key, hash, value); } /** * Removes all of the mappings from this map. */ @Override public final void clear() { ArrayList> entries = null; final BucketRegionIndexCleaner cleaner = BucketRegion.getIndexCleaner(); final boolean isOffHeapEnabled = LocalRegion.getAndClearOffHeapEnabled(); if(cleaner != null || isOffHeapEnabled) { entries = new ArrayList>(); } final CacheObserver observer = CacheObserverHolder.getInstance(); try { for (int i = 0; i < this.segments.length; ++i) { entries = this.segments[i].clear(entries); } } finally { if (entries != null) { final ArrayList> clearedEntries = entries; final Runnable runnable = new Runnable() { public void run() { ArrayList regionEntries = cleaner != null? new ArrayList() : null; for (HashEntry he: clearedEntries) { for (HashEntry p = he; p != null; p = p.getNextEntry()) { synchronized (p) { if(cleaner != null) { regionEntries.add((RegionEntry)p); }else { ((AbstractRegionEntry)p).release(); } } } } if(cleaner != null) { cleaner.clearEntries(regionEntries); } if(LocalRegion.ISSUE_CALLBACKS_TO_CACHE_OBSERVER && observer != null && isOffHeapEnabled) { observer.afterRegionCustomEntryConcurrentHashMapClear(); } } }; boolean submitted = false; InternalDistributedSystem ids = InternalDistributedSystem.getConnectedInstance(); if (ids != null && !ids.isLoner()) { try { ids.getDistributionManager().getWaitingThreadPool().submit(runnable); submitted = true; } catch (RejectedExecutionException e) { // fall through with submitted false } catch (CancelException e) { // fall through with submitted false } catch (NullPointerException e) { // fall through with submitted false } } if (!submitted) { String name = this.getClass().getSimpleName()+"@"+this.hashCode()+" Clear Thread"; Thread thread = new Thread(runnable, name); thread.setDaemon(true); thread.start(); } }else { if(LocalRegion.ISSUE_CALLBACKS_TO_CACHE_OBSERVER && observer != null && isOffHeapEnabled) { observer.afterRegionCustomEntryConcurrentHashMapClear(); } } } } /** * Returns a {@link Set} view of the keys contained in this map. The set is * backed by the map, so changes to the map are reflected in the set, and * vice-versa. The set supports element removal, which removes the * corresponding mapping from this map, via the Iterator.remove, * Set.remove, removeAll, retainAll, and * clear operations. It does not support the add or * addAll operations. * *

* The view's iterator is a "weakly consistent" iterator that will * never throw {@link java.util.ConcurrentModificationException}, and * guarantees to traverse elements as they existed upon construction of the * iterator, and may (but is not guaranteed to) reflect any modifications * subsequent to construction. */ @Override public final Set keySet() { final Set ks = this.keySet; return (ks != null) ? ks : (this.keySet = new KeySet()); } /** * Returns a {@link Collection} view of the values contained in this map. The * collection is backed by the map, so changes to the map are reflected in the * collection, and vice-versa. The collection supports element removal, which * removes the corresponding mapping from this map, via the * Iterator.remove, Collection.remove, removeAll, * retainAll, and clear operations. It does not support the * add or addAll operations. * *

* The view's iterator is a "weakly consistent" iterator that will * never throw {@link java.util.ConcurrentModificationException}, and * guarantees to traverse elements as they existed upon construction of the * iterator, and may (but is not guaranteed to) reflect any modifications * subsequent to construction. */ @Override public final Collection values() { final Collection vs = this.values; return (vs != null) ? vs : (this.values = new Values()); } /** * Returns a {@link Set} view of the mappings contained in this map. The set * is backed by the map, so changes to the map are reflected in the set, and * vice-versa. The set supports element removal, which removes the * corresponding mapping from the map, via the Iterator.remove, * Set.remove, removeAll, retainAll, and * clear operations. It does not support the add or * addAll operations. * *

* The view's iterator is a "weakly consistent" iterator that will * never throw {@link java.util.ConcurrentModificationException}, and * guarantees to traverse elements as they existed upon construction of the * iterator, and may (but is not guaranteed to) reflect any modifications * subsequent to construction. */ @Override public final Set> entrySet() { final Set> es = this.entrySet; return (es != null) ? es : (this.entrySet = new EntrySet(false)); } // GemStone addition /** * Returns a {@link Set} view of the mappings contained in this map. The set * is backed by the map, so changes to the map are reflected in the set, and * vice-versa. The set supports element removal, which removes the * corresponding mapping from the map, via the Iterator.remove, * Set.remove, removeAll, retainAll, and * clear operations. It does not support the add or * addAll operations. * *

* The view's iterator is a "weakly consistent" iterator that will * never throw {@link java.util.ConcurrentModificationException}, and * guarantees to traverse elements as they existed upon construction of the * iterator, and may (but is not guaranteed to) reflect any modifications * subsequent to construction. * *

* This set provides entries that are reused during iteration so caller cannot * store the returned Map.Entry objects. */ public final Set> entrySetWithReusableEntries() { final Set> es = this.reusableEntrySet; return (es != null) ? es : (this.reusableEntrySet = new EntrySet(true)); } // End GemStone addition /** * Returns an enumeration of the keys in this table. * * @return an enumeration of the keys in this table * @see #keySet() */ public final Enumeration keys() { return new KeyIterator(); } /** * Returns an enumeration of the values in this table. * * @return an enumeration of the values in this table * @see #values() */ public final Enumeration elements() { return new ValueIterator(); } /* ---------------- Iterator Support -------------- */ abstract class HashIterator { int currentSegmentIndex; int nextTableIndex; // GemStone changed HashEntry[] currentTable to currentSegment HashEntry[] currentTable; HashEntry nextEntry; HashEntry lastReturned; private HashEntry currentEntry; private final ArrayList> currentList; int currentListIndex; HashIterator() { this.currentSegmentIndex = CustomEntryConcurrentHashMap.this .segments.length; this.nextTableIndex = -1; this.currentList = new ArrayList<>(5); this.currentListIndex = 0; advance(); } public final boolean hasMoreElements() { return hasNext(); } final void advance() { // GemStone changes BEGIN if (this.currentListIndex == 0) { if (this.currentEntry != null) { this.nextEntry = this.currentEntry; this.currentListIndex = 1; return; } else if (this.currentList.size() > 0) { this.nextEntry = this.currentList.get(0); this.currentListIndex = 1; return; } } else if (this.currentListIndex < this.currentList.size()) { this.nextEntry = this.currentList.get(this.currentListIndex++); return; } this.nextEntry = null; if (this.nextTableIndex >= 0) { final Segment seg = CustomEntryConcurrentHashMap.this .segments[this.currentSegmentIndex]; seg.listUpdateLock.attemptReadLock(-1); try { do { if ((this.nextEntry = currentTable[this.nextTableIndex--]) != null) { copyEntriesToList(); return; } } while (this.nextTableIndex >= 0); } finally { seg.listUpdateLock.releaseReadLock(); } } /* (original code) if (this.nextEntry != null && (this.nextEntry = this.nextEntry.getNextEntry()) != null) { return; } while (this.nextTableIndex >= 0) { if ((this.nextEntry = this.currentTable[this.nextTableIndex--]) != null) { return; } } */ // GemStone changes END while (this.currentSegmentIndex > 0) { final Segment seg = CustomEntryConcurrentHashMap.this .segments[--this.currentSegmentIndex]; if (seg.count != 0) { this.currentTable = seg.table; seg.listUpdateLock.attemptReadLock(-1); try { for (int j = currentTable.length - 1; j >= 0; --j) { if ((this.nextEntry = currentTable[j]) != null) { this.nextTableIndex = j - 1; copyEntriesToList(); return; } } } finally { seg.listUpdateLock.releaseReadLock(); } } } } // GemStone added the method below /** * Copy the tail of list of current matched entry ({@link #nextEntry}) to a * temporary list, so that the read lock can be released after the copy. * * Read lock on {@link #currentSegmentIndex}'s listUpdateLock should already be * acquired. */ private final void copyEntriesToList() { assert segments[currentSegmentIndex] != null: "unexpected null currentSegment"; assert segments[currentSegmentIndex].listUpdateLock.numReaders() > 0; this.currentEntry = null; if (this.currentList.size() > 0) { this.currentList.clear(); } this.currentListIndex = 0; boolean useEntry = true; for (HashEntry p = this.nextEntry.getNextEntry(); p != null; p = p .getNextEntry()) { if (useEntry) { if (this.currentEntry == null) { this.currentEntry = p; } else { this.currentList.add(this.currentEntry); this.currentList.add(p); this.currentEntry = null; useEntry = false; } } else { this.currentList.add(p); } } } public final boolean hasNext() { return this.nextEntry != null; } final HashEntry nextEntry() { if (this.nextEntry == null) { throw new NoSuchElementException(); } this.lastReturned = this.nextEntry; advance(); return this.lastReturned; } public final void remove() { if (this.lastReturned == null) { throw new IllegalStateException(); } CustomEntryConcurrentHashMap.this.remove(this.lastReturned.getKey()); this.lastReturned = null; } } final class KeyIterator extends HashIterator implements Iterator, Enumeration { public K next() { return super.nextEntry().getKeyCopy(); } public K nextElement() { return super.nextEntry().getKeyCopy(); } } final class ValueIterator extends HashIterator implements Iterator, Enumeration { public V next() { return super.nextEntry().getMapValue(); } public V nextElement() { return super.nextEntry().getMapValue(); } } /** * Custom Entry class used by EntryIterator.next(), that relays setValue * changes to the underlying map. */ final class WriteThroughEntry extends SimpleReusableEntry { /** * Creates an entry representing a mapping from the specified key to the * specified value. * * @param key * the key represented by this entry * @param value * the value represented by this entry */ WriteThroughEntry(final K key, final V value) { super(key, value, compareValues); } /** * Set our entry's value and write through to the map. The value to return * is somewhat arbitrary here. Since a WriteThroughEntry does not * necessarily track asynchronous changes, the most recent "previous" value * could be different from what we return (or could even have been removed * in which case the put will re-establish). We do not and cannot guarantee * more. */ @Override public V setValue(final V value) { if (value == null) { throw new NullPointerException(); } final V v = super.setValue(value); CustomEntryConcurrentHashMap.this.put(getKey(), value); return v; } } final class EntryIterator extends HashIterator implements Iterator> { // GemStone change // added possibility to reuse a single Map.Entry for entire iteration final WriteThroughEntry reusableEntry; EntryIterator(final WriteThroughEntry reusableEntry) { this.reusableEntry = reusableEntry; } public Map.Entry next() { final HashEntry e = super.nextEntry(); if (this.reusableEntry != null) { this.reusableEntry.key = e.getKeyCopy(); this.reusableEntry.setValue(e.getMapValue()); return this.reusableEntry; } return new WriteThroughEntry(e.getKeyCopy(), e.getMapValue()); } // End GemStone change } final class KeySet extends AbstractSet { @Override public Iterator iterator() { return new KeyIterator(); } @Override public int size() { return CustomEntryConcurrentHashMap.this.size(); } @Override public boolean contains(final Object o) { return CustomEntryConcurrentHashMap.this.containsKey(o); } @Override public boolean remove(final Object o) { return CustomEntryConcurrentHashMap.this.remove(o) != null; } @Override public void clear() { CustomEntryConcurrentHashMap.this.clear(); } } final class Values extends AbstractCollection { @Override public Iterator iterator() { return new ValueIterator(); } @Override public int size() { return CustomEntryConcurrentHashMap.this.size(); } @Override public boolean contains(final Object o) { return CustomEntryConcurrentHashMap.this.containsValue(o); } @Override public void clear() { CustomEntryConcurrentHashMap.this.clear(); } } final class EntrySet extends AbstractSet> { // GemStone change // added possibility to reuse a single Map.Entry for entire iteration final WriteThroughEntry reusableEntry; EntrySet(final boolean useReusableEntry) { if (useReusableEntry) { this.reusableEntry = new WriteThroughEntry(null, null); } else { this.reusableEntry = null; } } @Override public Iterator> iterator() { return new EntryIterator(this.reusableEntry); } // End GemStone change @Override public boolean contains(final Object o) { if (!(o instanceof Map.Entry)) { return false; } final Map.Entry e = (Map.Entry)o; final V v = CustomEntryConcurrentHashMap.this.get(e.getKey()); if (CustomEntryConcurrentHashMap.this.compareValues) { return v != null && v.equals(e.getValue()); } return v == e.getValue(); } @Override public boolean remove(final Object o) { if (!(o instanceof Map.Entry)) { return false; } final Map.Entry e = (Map.Entry)o; return CustomEntryConcurrentHashMap.this.remove(e.getKey(), e.getValue()); } @Override public int size() { return CustomEntryConcurrentHashMap.this.size(); } @Override public void clear() { CustomEntryConcurrentHashMap.this.clear(); } } /* ---------------- Serialization Support -------------- */ /** * Save the state of the ConcurrentHashMap instance to a stream * (i.e., serialize it). * * @param s * the stream * @serialData the key (Object) and value (Object) for each key-value mapping, * followed by a null pair. The key-value mappings are emitted in * no particular order. */ private void writeObject(final java.io.ObjectOutputStream s) throws IOException { s.defaultWriteObject(); for (int k = 0; k < this.segments.length; ++k) { final Segment seg = this.segments[k]; seg.attemptReadLock(-1); try { final HashEntry[] tab = seg.table; for (int i = 0; i < tab.length; ++i) { for (HashEntry e = tab[i]; e != null; e = e.getNextEntry()) { s.writeObject(e.getKeyCopy()); s.writeObject(e.getMapValue()); } } } finally { seg.releaseReadLock(); } } s.writeObject(null); s.writeObject(null); } /** * Reconstitute the ConcurrentHashMap instance from a stream (i.e., * deserialize it). * * @param s * the stream */ @SuppressWarnings("unchecked") private void readObject(final java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { s.defaultReadObject(); // Initialize each segment to be minimally sized, and let grow. for (int i = 0; i < this.segments.length; ++i) { this.segments[i].setTable(new HashEntry[1]); } // Read the keys and values, and put the mappings in the table for (;;) { final K key = (K)s.readObject(); final V value = (V)s.readObject(); if (key == null) { break; } put(key, value); } } public long estimateMemoryOverhead(SingleObjectSizer sizer) { long totalOverhead = sizer.sizeof(this); for (int i = 0; i < this.segments.length; ++i) { final Segment seg = this.segments[i]; totalOverhead += sizer.sizeof(seg); } return totalOverhead; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy