All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.gemstone.gemfire.internal.tcp.MsgStreamer Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2010-2015 Pivotal Software, Inc. All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you
 * may not use this file except in compliance with the License. You
 * may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied. See the License for the specific language governing
 * permissions and limitations under the License. See accompanying
 * LICENSE file.
 */
package com.gemstone.gemfire.internal.tcp;

import java.io.*;
import java.nio.*;
import java.util.*;

import com.gemstone.gemfire.DataSerializer;
import com.gemstone.gemfire.distributed.internal.*;
import com.gemstone.gemfire.i18n.LogWriterI18n;
import com.gemstone.gemfire.internal.*;
// import com.gemstone.gemfire.LogWriterI18n;
// import com.gemstone.gemfire.distributed.DistributedSystem;
import com.gemstone.gemfire.internal.i18n.LocalizedStrings;
import com.gemstone.gemfire.internal.shared.Version;
import com.gemstone.gnu.trove.THashMap;
import com.gemstone.gnu.trove.TObjectObjectProcedure;

/** 

MsgStreamer supports streaming a message to a tcp Connection * in chunks. This allows us to send a message without needing to * perserialize it completely in memory thus saving buffer memory. @author Darrel @since 5.0.2 */ public class MsgStreamer extends OutputStream implements ObjToByteArraySerializer, BaseMsgStreamer { /** * List of connections to send this msg to. */ private final List cons; /** * Any exceptions that happen during sends */ private ConnectExceptions ce; /** * The byte buffer we used for preparing a chunk of the message. * Currently this buffer is obtained from the connection. */ private final ByteBuffer buffer; private int flushedBytes = 0; // the message this streamer is to send private final DistributionMessage msg; /** * True if this message went out as a normal one (it fit it one chunk) * False if this message needed to be chunked. */ private boolean normalMsg = false; /** * Set to true when we have started serializing a message. * If this is true and doneWritingMsg is false * and we think we have finished writing the msg then we have a problem. */ private boolean startedSerializingMsg = false; /** * Set to true after last byte of message has been written to this stream. */ private boolean doneWritingMsg = false; final private DMStats stats; private short msgId; private long serStartTime; private final boolean directReply; /** * Called to free up resources used by this streamer after the streamer has * produced its message. */ protected final void release() { MsgIdGenerator.release(this.msgId); this.buffer.clear(); this.overflowBuf = null; Buffers.releaseSenderBuffer(this.buffer, this.stats); } /** * Returns an exception the describes which cons the message was not sent to. * Call this after {@link #writeMessage}. */ public final ConnectExceptions getConnectExceptions() { return this.ce; } /** * Returns a list of the Connections that the message was sent to. * Call this after {@link #writeMessage}. */ public final List getSentConnections() { return this.cons; } /** * Create a msg streamer that will send the given msg to the given cons. * * Note: This is no longer supposed to be called directly rather the * {@link #create} method should now be used. */ MsgStreamer(List cons, DistributionMessage msg, boolean directReply, DMStats stats, int sendBufferSize) { this.stats = stats; this.msg = msg; this.cons = cons; this.buffer = Buffers.acquireSenderBuffer(sendBufferSize, stats); this.buffer.clear(); this.buffer.position(Connection.MSG_HEADER_BYTES); this.msgId = MsgIdGenerator.NO_MSG_ID; this.directReply = directReply; startSerialization(); } /** * Create message streamers splitting into versioned streamers, if required, * for given list of connections to remote nodes. This method can either * return a single MsgStreamer object or a List of MsgStreamer objects. */ public static BaseMsgStreamer create(List cons, final DistributionMessage msg, final boolean directReply, final DMStats stats) { final Connection firstCon = (Connection)cons.get(0); // split into different versions if required Version version; final int numCons = cons.size(); if (numCons > 1) { Connection con; THashMap versionToConnMap = null; int numVersioned = 0; for (Object c : cons) { con = (Connection)c; if ((version = con.getRemoteVersion()) != null) { if (versionToConnMap == null) { versionToConnMap = new THashMap(); } @SuppressWarnings("unchecked") ArrayList vcons = (ArrayList)versionToConnMap .get(version); if (vcons == null) { vcons = new ArrayList(numCons); versionToConnMap.put(version, vcons); } vcons.add(con); numVersioned++; } } if (versionToConnMap == null) { return new MsgStreamer(cons, msg, directReply, stats, firstCon.getSendBufferSize()); } else { // if there is a versioned stream created, then split remaining // connections to unversioned stream final ArrayList streamers = new ArrayList( versionToConnMap.size() + 1); final int sendBufferSize = firstCon.getSendBufferSize(); if (numCons > numVersioned) { // allocating list of numCons size so that as the result of // getSentConnections it may not need to be reallocted later final ArrayList unversionedCons = new ArrayList( numCons); for (Object c : cons) { con = (Connection)c; if ((version = con.getRemoteVersion()) == null) { unversionedCons.add(con); } } streamers.add(new MsgStreamer(unversionedCons, msg, directReply, stats, sendBufferSize)); } versionToConnMap.forEachEntry(new TObjectObjectProcedure() { @Override public boolean execute(Object ver, Object l) { streamers.add(new VersionedMsgStreamer((List)l, msg, directReply, stats, sendBufferSize, (Version)ver)); return true; } }); return new MsgStreamerList(streamers); } } else if ((version = firstCon.getRemoteVersion()) == null) { return new MsgStreamer(cons, msg, directReply, stats, firstCon.getSendBufferSize()); } else { // create a single VersionedMsgStreamer return new VersionedMsgStreamer(cons, msg, directReply, stats, firstCon.getSendBufferSize(), version); } } /** * set connections to be "in use" and schedule alert tasks * @param startTime * @param ackTimeout * @param ackSDTimeout */ public void reserveConnections(long startTime, long ackTimeout, long ackSDTimeout) { for (Iterator it=cons.iterator(); it.hasNext(); ) { Connection con = (Connection)it.next(); con.setInUse(true, startTime, ackTimeout, ackSDTimeout, cons); if (ackTimeout > 0) { con.scheduleAckTimeouts(); } } } private void startSerialization() { this.serStartTime = stats.startMsgSerialization(); } private static final boolean DEBUG = false; private final void debug(String logmsg) { if (DEBUG) { Connection con = (Connection)this.cons.get(0); if (con.getLogger().fineEnabled()) { String m = "DEBUG:MsgStreamer " + logmsg; con.getLogger().fine(m); } } } /** * @throws IOException if serialization failure */ public final int writeMessage() throws IOException { if (DEBUG) debug(this.msg.toString()); try { this.startedSerializingMsg = true; InternalDataSerializer.writeDSFID(this.msg, this); this.doneWritingMsg = true; if (this.flushedBytes == 0) { // message fit in one chunk this.normalMsg = true; } realFlush(true); return this.flushedBytes; } finally { release(); } } /** write the low-order 8 bits of the given int */ @Override public final void write(int b) { if (DEBUG) debug(" byte=" + b); ensureCapacity(1); if (this.overflowBuf != null) { this.overflowBuf.write(b); return; } this.buffer.put((byte)b); } private final void ensureCapacity(int amount) { if (this.overflowBuf != null) { return; } int remainingSpace = this.buffer.capacity() - this.buffer.position(); if (amount > remainingSpace) { realFlush(false); } } @Override public void flush() { // this is a noop so that when ObjectOutputStream calls us // for each chunk from it we will not send data early to our connection. } private int overflowMode = 0; private HeapDataOutputStream overflowBuf = null; private boolean isOverflowMode() { return this.overflowMode > 0; } private void enableOverflowMode() { this.overflowMode++; } private void disableOverflowMode() { this.overflowMode--; if (!isOverflowMode()) { this.overflowBuf = null; } } // private void logit(String s) { // LogWriterI18n l = getLogger(); // if (l != null) { // l.fine(s); // } // } // private LogWriterI18n getLogger() { // LogWriterI18n result = null; // DistributedSystem ds = InternalDistributedSystem.getAnyInstance(); // if (ds != null) { // result = ds.getLogWriter(); // } // return result; // } public final void realFlush(boolean lastFlushForMessage) { if (isOverflowMode()) { if (this.overflowBuf == null) { this.overflowBuf = new HeapDataOutputStream(this.buffer.capacity()-Connection.MSG_HEADER_BYTES, Version.CURRENT); } return; } this.buffer.flip(); setMessageHeader(); final int serializedBytes = this.buffer.limit(); this.flushedBytes += serializedBytes; DistributionMessage conflationMsg = null; if (this.normalMsg) { // we can't conflate chunked messages; this fixes bug 36633 conflationMsg = this.msg; } this.stats.endMsgSerialization(this.serStartTime); for (Iterator it=this.cons.iterator(); it.hasNext();) { Connection con = (Connection)it.next(); try { con.sendPreserialized(this.buffer, lastFlushForMessage && this.msg.containsRegionContentChange(), conflationMsg); } catch (IOException ex) { it.remove(); if (this.ce == null) this.ce = new ConnectExceptions(); this.ce.addFailure(con.getRemoteAddress(), ex); con.closeForReconnect(LocalizedStrings.MsgStreamer_CLOSING_DUE_TO_0.toLocalizedString("IOException")); } catch (ConnectionException ex) { it.remove(); if (this.ce == null) this.ce = new ConnectExceptions(); this.ce.addFailure(con.getRemoteAddress(), ex); con.closeForReconnect(LocalizedStrings.MsgStreamer_CLOSING_DUE_TO_0.toLocalizedString("ConnectionException")); } this.buffer.rewind(); } startSerialization(); this.buffer.clear(); this.buffer.position(Connection.MSG_HEADER_BYTES); } @Override public final void close() throws IOException { try { if (this.startedSerializingMsg && !this.doneWritingMsg) { // if we wrote any bytes on the cnxs then we need to close them // since they have been corrupted by a partial serialization. if (this.flushedBytes > 0) { for (Iterator it=this.cons.iterator(); it.hasNext();) { Connection con = (Connection)it.next(); con.closeForReconnect("Message serialization could not complete"); } } } } finally { super.close(); } } @Override public final void close(LogWriterI18n logger) throws IOException { close(); } /** override OutputStream's write() */ @Override public final void write(byte[] source, int offset, int len) { if (DEBUG) debug(" bytes=" + source + " offset=" + offset + " len=" + len); if (this.overflowBuf != null) { this.overflowBuf.write(source, offset, len); return; } while (len > 0) { int remainingSpace = this.buffer.capacity() - this.buffer.position(); if (remainingSpace == 0) { realFlush(false); if (this.overflowBuf != null) { this.overflowBuf.write(source, offset, len); return; } } else { int chunkSize = remainingSpace; if (len < chunkSize) { chunkSize = len; } this.buffer.put(source, offset, chunkSize); offset += chunkSize; len -= chunkSize; } } } /** write the header after the message has been written to the stream */ private final void setMessageHeader() { Assert.assertTrue(this.overflowBuf == null); Assert.assertTrue(!isOverflowMode()); // int processorType = this.msg.getProcessorType(); int msgType; if (this.doneWritingMsg) { if (this.normalMsg) { msgType = Connection.NORMAL_MSG_TYPE; } else { msgType = Connection.END_CHUNKED_MSG_TYPE; } if (directReply) { msgType |= Connection.DIRECT_ACK_BIT; } } else { msgType = Connection.CHUNKED_MSG_TYPE; } if (!this.normalMsg) { if (this.msgId == MsgIdGenerator.NO_MSG_ID) { this.msgId = MsgIdGenerator.obtain(); } } // logit("MS: HEADER" // + " type=" + msgType // + " size=" + (this.buffer.limit()-Connection.MSG_HEADER_BYTES) // + " msgId=" + this.msgId); this.buffer.putInt(Connection.MSG_HEADER_SIZE_OFFSET, Connection.calcHdrSize(this.buffer.limit()-Connection.MSG_HEADER_BYTES)); this.buffer.put(Connection.MSG_HEADER_TYPE_OFFSET, (byte)(msgType&0xff)); this.buffer.putShort(Connection.MSG_HEADER_ID_OFFSET, this.msgId); this.buffer.position(0); } // DataOutput methods /** * Writes a boolean value to this output stream. * If the argument v * is true, the value (byte)1 * is written; if v is false, * the value (byte)0 is written. * The byte written by this method may * be read by the readBoolean * method of interface DataInput, * which will then return a boolean * equal to v. * * @param v the boolean to be written. */ public final void writeBoolean(boolean v) { write(v ? 1 : 0); } /** * Writes to the output stream the eight low- * order bits of the argument v. * The 24 high-order bits of v * are ignored. (This means that writeByte * does exactly the same thing as write * for an integer argument.) The byte written * by this method may be read by the readByte * method of interface DataInput, * which will then return a byte * equal to (byte)v. * * @param v the byte value to be written. */ public final void writeByte(int v) { write(v); } /** * Writes two bytes to the output * stream to represent the value of the argument. * The byte values to be written, in the order * shown, are:

*


     * (byte)(0xff & (v >> 8))
     * (byte)(0xff & v)
     *  

* The bytes written by this method may be * read by the readShort method * of interface DataInput , which * will then return a short equal * to (short)v. * * @param v the short value to be written. */ public final void writeShort(int v) { if (DEBUG) debug(" short=" + v); ensureCapacity(2); if (this.overflowBuf != null) { this.overflowBuf.writeShort(v); return; } this.buffer.putShort((short)v); } /** * Writes a char value, wich * is comprised of two bytes, to the * output stream. * The byte values to be written, in the order * shown, are: *


     * (byte)(0xff & (v >> 8))
     * (byte)(0xff & v)
     * 

* The bytes written by this method may be * read by the readChar method * of interface DataInput , which * will then return a char equal * to (char)v. * * @param v the char value to be written. */ public final void writeChar(int v) { if (DEBUG) debug(" char=" + v); ensureCapacity(2); if (this.overflowBuf != null) { this.overflowBuf.writeChar(v); return; } this.buffer.putChar((char)v); } /** * Writes an int value, which is * comprised of four bytes, to the output stream. * The byte values to be written, in the order * shown, are: *


     * (byte)(0xff & (v >> 24))
     * (byte)(0xff & (v >> 16))
     * (byte)(0xff & (v >>    8))
     * (byte)(0xff & v)
     * 

* The bytes written by this method may be read * by the readInt method of interface * DataInput , which will then * return an int equal to v. * * @param v the int value to be written. */ public final void writeInt(int v) { if (DEBUG) debug(" int=" + v); ensureCapacity(4); if (this.overflowBuf != null) { this.overflowBuf.writeInt(v); return; } this.buffer.putInt(v); } /** * Writes a long value, which is * comprised of eight bytes, to the output stream. * The byte values to be written, in the order * shown, are: *


     * (byte)(0xff & (v >> 56))
     * (byte)(0xff & (v >> 48))
     * (byte)(0xff & (v >> 40))
     * (byte)(0xff & (v >> 32))
     * (byte)(0xff & (v >> 24))
     * (byte)(0xff & (v >> 16))
     * (byte)(0xff & (v >>  8))
     * (byte)(0xff & v)
     * 

* The bytes written by this method may be * read by the readLong method * of interface DataInput , which * will then return a long equal * to v. * * @param v the long value to be written. */ public final void writeLong(long v) { if (DEBUG) debug(" long=" + v); ensureCapacity(8); if (this.overflowBuf != null) { this.overflowBuf.writeLong(v); return; } this.buffer.putLong(v); } /** * Writes a float value, * which is comprised of four bytes, to the output stream. * It does this as if it first converts this * float value to an int * in exactly the manner of the Float.floatToIntBits * method and then writes the int * value in exactly the manner of the writeInt * method. The bytes written by this method * may be read by the readFloat * method of interface DataInput, * which will then return a float * equal to v. * * @param v the float value to be written. */ public final void writeFloat(float v) { if (DEBUG) debug(" float=" + v); ensureCapacity(4); if (this.overflowBuf != null) { this.overflowBuf.writeFloat(v); return; } this.buffer.putFloat(v); } /** * Writes a double value, * which is comprised of eight bytes, to the output stream. * It does this as if it first converts this * double value to a long * in exactly the manner of the Double.doubleToLongBits * method and then writes the long * value in exactly the manner of the writeLong * method. The bytes written by this method * may be read by the readDouble * method of interface DataInput, * which will then return a double * equal to v. * * @param v the double value to be written. */ public final void writeDouble(double v) { if (DEBUG) debug(" double=" + v); ensureCapacity(8); if (this.overflowBuf != null) { this.overflowBuf.writeDouble(v); return; } this.buffer.putDouble(v); } /** * Writes a string to the output stream. * For every character in the string * s, taken in order, one byte * is written to the output stream. If * s is null, a NullPointerException * is thrown.

If s.length * is zero, then no bytes are written. Otherwise, * the character s[0] is written * first, then s[1], and so on; * the last character written is s[s.length-1]. * For each character, one byte is written, * the low-order byte, in exactly the manner * of the writeByte method . The * high-order eight bits of each character * in the string are ignored. * * @param str the string of bytes to be written. */ public final void writeBytes(String str) { if (DEBUG) debug(" bytes=" + str); if (this.overflowBuf != null) { this.overflowBuf.writeBytes(str); return; } int strlen = str.length(); if (strlen > 0) { for (int i = 0; i < strlen; i++) { writeByte((byte)str.charAt(i)); } } } /** * Writes every character in the string s, * to the output stream, in order, * two bytes per character. If s * is null, a NullPointerException * is thrown. If s.length * is zero, then no characters are written. * Otherwise, the character s[0] * is written first, then s[1], * and so on; the last character written is * s[s.length-1]. For each character, * two bytes are actually written, high-order * byte first, in exactly the manner of the * writeChar method. * * @param s the string value to be written. */ public final void writeChars(String s) { if (DEBUG) debug(" chars=" + s); if (this.overflowBuf != null) { this.overflowBuf.writeChars(s); return; } int len = s.length(); int offset = 0; while (len > 0) { int remainingCharSpace = (this.buffer.capacity() - this.buffer.position())/2; if (remainingCharSpace == 0) { realFlush(false); if (this.overflowBuf != null) { this.overflowBuf.writeChars(s.substring(offset)); return; } } else { int chunkSize = remainingCharSpace; if (len < chunkSize) { chunkSize = len; } for (int i=0; i < chunkSize; i++) { this.buffer.putChar(s.charAt(offset+i)); } offset += chunkSize; len -= chunkSize; } } } /** * Use -Dgemfire.ASCII_STRINGS=true if all String instances contain * ASCII characters. Setting this to true gives a performance improvement. */ private static final boolean ASCII_STRINGS = Boolean.getBoolean("gemfire.ASCII_STRINGS"); /** * Writes two bytes of length information * to the output stream, followed * by the Java modified UTF representation * of every character in the string s. * If s is null, * a NullPointerException is thrown. * Each character in the string s * is converted to a group of one, two, or * three bytes, depending on the value of the * character.

* If a character c * is in the range \u0001 through * \u007f, it is represented * by one byte:

*

(byte)c 

* If a character c is \u0000 * or is in the range \u0080 * through \u07ff, then it is * represented by two bytes, to be written * in the order shown:


     * (byte)(0xc0 | (0x1f & (c >> 6)))
     * (byte)(0x80 | (0x3f & c))
     *  

If a character * c is in the range \u0800 * through uffff, then it is * represented by three bytes, to be written * in the order shown:


     * (byte)(0xe0 | (0x0f & (c >> 12)))
     * (byte)(0x80 | (0x3f & (c >>  6)))
     * (byte)(0x80 | (0x3f & c))
     *  

First, * the total number of bytes needed to represent * all the characters of s is * calculated. If this number is larger than * 65535, then a UTFDataFormatException * is thrown. Otherwise, this length is written * to the output stream in exactly the manner * of the writeShort method; * after this, the one-, two-, or three-byte * representation of each character in the * string s is written.

The * bytes written by this method may be read * by the readUTF method of interface * DataInput , which will then * return a String equal to s. * * @param str the string value to be written. * @exception IOException if an I/O error occurs. */ public final void writeUTF(String str) throws IOException { if (DEBUG) debug(" utf=" + str); if (this.overflowBuf != null) { this.overflowBuf.writeUTF(str); return; } if (ASCII_STRINGS) { writeAsciiUTF(str); } else { writeFullUTF(str); } } private final void writeAsciiUTF(String str) throws IOException { int len = str.length(); if (len > 65535) { throw new UTFDataFormatException(); } writeShort(len); int offset = 0; while (len > 0) { int remainingSpace = this.buffer.capacity() - this.buffer.position(); if (remainingSpace == 0) { realFlush(false); if (this.overflowBuf != null) { this.overflowBuf.write(str.substring(offset).getBytes()); return; } } else { int chunkSize = remainingSpace; if (len < chunkSize) { chunkSize = len; } for (int i = 0; i < chunkSize; i++) { this.buffer.put((byte)str.charAt(offset+i)); } offset += chunkSize; len -= chunkSize; } } } private final void writeFullUTF(String str) throws IOException { int strlen = str.length(); if (strlen > 65535) { throw new UTFDataFormatException(); } { int remainingSpace = this.buffer.capacity() - this.buffer.position(); if (remainingSpace >= ((strlen*3) + 2)) { // we have plenty of room to do this with one pass directly into the buffer writeQuickFullUTF(str, strlen); return; } } int utfSize = 0; for (int i = 0; i < strlen; i++) { int c = str.charAt(i); if ((c >= 0x0001) && (c <= 0x007F)) { utfSize += 1; } else if (c > 0x07FF) { utfSize += 3; } else { utfSize += 2; } } if (utfSize > 65535) { throw new UTFDataFormatException(); } writeShort(utfSize); for (int i = 0; i < strlen; i++) { int c = str.charAt(i); if ((c >= 0x0001) && (c <= 0x007F)) { writeByte((byte)c); } else if (c > 0x07FF) { writeByte((byte) (0xE0 | ((c >> 12) & 0x0F))); writeByte((byte) (0x80 | ((c >> 6) & 0x3F))); writeByte((byte) (0x80 | ((c >> 0) & 0x3F))); } else { writeByte((byte) (0xC0 | ((c >> 6) & 0x1F))); writeByte((byte) (0x80 | ((c >> 0) & 0x3F))); } } } /** * Used when we know the max size will fit in the current buffer. */ private final void writeQuickFullUTF(String str, int strlen) throws IOException { int utfSizeIdx = this.buffer.position(); // skip bytes reserved for length this.buffer.position(utfSizeIdx+2); for (int i = 0; i < strlen; i++) { int c = str.charAt(i); if ((c >= 0x0001) && (c <= 0x007F)) { this.buffer.put((byte)c); } else if (c > 0x07FF) { this.buffer.put((byte) (0xE0 | ((c >> 12) & 0x0F))); this.buffer.put((byte) (0x80 | ((c >> 6) & 0x3F))); this.buffer.put((byte) (0x80 | ((c >> 0) & 0x3F))); } else { this.buffer.put((byte) (0xC0 | ((c >> 6) & 0x1F))); this.buffer.put((byte) (0x80 | ((c >> 0) & 0x3F))); } } int utflen = this.buffer.position() - (utfSizeIdx+2); if (utflen > 65535) { // act as if we wrote nothing to this buffer this.buffer.position(utfSizeIdx); throw new UTFDataFormatException(); } this.buffer.putShort(utfSizeIdx, (short)utflen); } /** * Attempt to fit v into the current buffer as a serialized byte array. * This is done by reserving 5 bytes for the length * and then starting the serialization. If all the bytes fit * then the length is fixed up and we are done. * If it doesn't fit then we need to serialize the remainder to a temporary * HeapDataOutputStream and then fix the length flush the first chunk and * then send the contents of the HeapDataOutputStream to this streamer. * All of this is done to prevent an extra copy when the serialized form * will all fit into our current buffer. */ public final void writeAsSerializedByteArray(Object v) throws IOException { if (v instanceof HeapDataOutputStream) { HeapDataOutputStream other = (HeapDataOutputStream)v; InternalDataSerializer.writeArrayLength(other.size(), this); other.sendTo((OutputStream)this); other.rewind(); return; } if (this.overflowBuf != null) { this.overflowBuf.writeAsSerializedByteArray(v); return; } if (isOverflowMode()) { // we must have recursed which is now allowed to fix bug 38194 int remainingSpace = this.buffer.capacity() - this.buffer.position(); if (remainingSpace < 5) { // we don't even have room to write the length field so just create // the overflowBuf this.overflowBuf = new HeapDataOutputStream(this.buffer.capacity()-Connection.MSG_HEADER_BYTES, Version.CURRENT); this.overflowBuf.writeAsSerializedByteArray(v); return; } } else { ensureCapacity(5+1024); /* need 5 bytes for length plus enough room for * an 'average' small object. * I pulled 1024 as the average out of thin air. */ } int lengthPos = this.buffer.position(); this.buffer.position(lengthPos+5); enableOverflowMode(); boolean finished = false; try { try { DataSerializer.writeObject(v, this); } catch (IOException e) { RuntimeException e2 = new IllegalArgumentException(LocalizedStrings.MsgStreamer_AN_EXCEPTION_WAS_THROWN_WHILE_SERIALIZING.toLocalizedString()); e2.initCause(e); throw e2; } int baLength = this.buffer.position()-(lengthPos+5); HeapDataOutputStream overBuf = this.overflowBuf; if (overBuf != null) { baLength += overBuf.size(); } this.buffer.put(lengthPos, InternalDataSerializer.INT_ARRAY_LEN); this.buffer.putInt(lengthPos+1, baLength); disableOverflowMode(); finished = true; if (overBuf != null && !isOverflowMode()) { overBuf.sendTo((OutputStream)this); } } finally { if (!finished) { // reset buffer and act as if we did nothing this.buffer.position(lengthPos); disableOverflowMode(); } } } }