All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.Accumulable.scala Maven / Gradle / Ivy

There is a newer version: 2.1.3.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark

import java.io.Serializable

import scala.collection.generic.Growable
import scala.reflect.ClassTag

import org.apache.spark.scheduler.AccumulableInfo
import org.apache.spark.serializer.JavaSerializer
import org.apache.spark.util.{AccumulatorContext, AccumulatorMetadata, LegacyAccumulatorWrapper}


/**
 * A data type that can be accumulated, i.e. has a commutative and associative "add" operation,
 * but where the result type, `R`, may be different from the element type being added, `T`.
 *
 * You must define how to add data, and how to merge two of these together.  For some data types,
 * such as a counter, these might be the same operation. In that case, you can use the simpler
 * [[org.apache.spark.Accumulator]]. They won't always be the same, though -- e.g., imagine you are
 * accumulating a set. You will add items to the set, and you will union two sets together.
 *
 * Operations are not thread-safe.
 *
 * @param id ID of this accumulator; for internal use only.
 * @param initialValue initial value of accumulator
 * @param param helper object defining how to add elements of type `R` and `T`
 * @param name human-readable name for use in Spark's web UI
 * @param countFailedValues whether to accumulate values from failed tasks. This is set to true
 *                          for system and time metrics like serialization time or bytes spilled,
 *                          and false for things with absolute values like number of input rows.
 *                          This should be used for internal metrics only.
 * @tparam R the full accumulated data (result type)
 * @tparam T partial data that can be added in
 */
@deprecated("use AccumulatorV2", "2.0.0")
class Accumulable[R, T] private (
    val id: Long,
    // SI-8813: This must explicitly be a private val, or else scala 2.11 doesn't compile
    @transient private val initialValue: R,
    param: AccumulableParam[R, T],
    val name: Option[String],
    private[spark] val countFailedValues: Boolean)
  extends Serializable {

  private[spark] def this(
      initialValue: R,
      param: AccumulableParam[R, T],
      name: Option[String],
      countFailedValues: Boolean) = {
    this(AccumulatorContext.newId(), initialValue, param, name, countFailedValues)
  }

  private[spark] def this(initialValue: R, param: AccumulableParam[R, T], name: Option[String]) = {
    this(initialValue, param, name, false /* countFailedValues */)
  }

  def this(initialValue: R, param: AccumulableParam[R, T]) = this(initialValue, param, None)

  val zero = param.zero(initialValue)
  private[spark] val newAcc = new LegacyAccumulatorWrapper(initialValue, param)
  newAcc.metadata = AccumulatorMetadata(id, name, countFailedValues)
  // Register the new accumulator in ctor, to follow the previous behaviour.
  AccumulatorContext.register(newAcc)

  /**
   * Add more data to this accumulator / accumulable
   * @param term the data to add
   */
  def += (term: T) { newAcc.add(term) }

  /**
   * Add more data to this accumulator / accumulable
   * @param term the data to add
   */
  def add(term: T) { newAcc.add(term) }

  /**
   * Merge two accumulable objects together
   *
   * Normally, a user will not want to use this version, but will instead call `+=`.
   * @param term the other `R` that will get merged with this
   */
  def ++= (term: R) { newAcc._value = param.addInPlace(newAcc._value, term) }

  /**
   * Merge two accumulable objects together
   *
   * Normally, a user will not want to use this version, but will instead call `add`.
   * @param term the other `R` that will get merged with this
   */
  def merge(term: R) { newAcc._value = param.addInPlace(newAcc._value, term) }

  /**
   * Access the accumulator's current value; only allowed on driver.
   */
  def value: R = {
    if (newAcc.isAtDriverSide) {
      newAcc.value
    } else {
      throw new UnsupportedOperationException("Can't read accumulator value in task")
    }
  }

  /**
   * Get the current value of this accumulator from within a task.
   *
   * This is NOT the global value of the accumulator.  To get the global value after a
   * completed operation on the dataset, call `value`.
   *
   * The typical use of this method is to directly mutate the local value, eg., to add
   * an element to a Set.
   */
  def localValue: R = newAcc.value

  /**
   * Set the accumulator's value; only allowed on driver.
   */
  def value_= (newValue: R) {
    if (newAcc.isAtDriverSide) {
      newAcc._value = newValue
    } else {
      throw new UnsupportedOperationException("Can't assign accumulator value in task")
    }
  }

  /**
   * Set the accumulator's value. For internal use only.
   */
  def setValue(newValue: R): Unit = { newAcc._value = newValue }

  /**
   * Set the accumulator's value. For internal use only.
   */
  private[spark] def setValueAny(newValue: Any): Unit = { setValue(newValue.asInstanceOf[R]) }

  /**
   * Create an [[AccumulableInfo]] representation of this [[Accumulable]] with the provided values.
   */
  private[spark] def toInfo(update: Option[Any], value: Option[Any]): AccumulableInfo = {
    val isInternal = name.exists(_.startsWith(InternalAccumulator.METRICS_PREFIX))
    new AccumulableInfo(id, name, update, value, isInternal, countFailedValues)
  }

  override def toString: String = if (newAcc._value == null) "null" else newAcc._value.toString
}


/**
 * Helper object defining how to accumulate values of a particular type. An implicit
 * AccumulableParam needs to be available when you create [[Accumulable]]s of a specific type.
 *
 * @tparam R the full accumulated data (result type)
 * @tparam T partial data that can be added in
 */
@deprecated("use AccumulatorV2", "2.0.0")
trait AccumulableParam[R, T] extends Serializable {
  /**
   * Add additional data to the accumulator value. Is allowed to modify and return `r`
   * for efficiency (to avoid allocating objects).
   *
   * @param r the current value of the accumulator
   * @param t the data to be added to the accumulator
   * @return the new value of the accumulator
   */
  def addAccumulator(r: R, t: T): R

  /**
   * Merge two accumulated values together. Is allowed to modify and return the first value
   * for efficiency (to avoid allocating objects).
   *
   * @param r1 one set of accumulated data
   * @param r2 another set of accumulated data
   * @return both data sets merged together
   */
  def addInPlace(r1: R, r2: R): R

  /**
   * Return the "zero" (identity) value for an accumulator type, given its initial value. For
   * example, if R was a vector of N dimensions, this would return a vector of N zeroes.
   */
  def zero(initialValue: R): R
}


@deprecated("use AccumulatorV2", "2.0.0")
private[spark] class
GrowableAccumulableParam[R <% Growable[T] with TraversableOnce[T] with Serializable: ClassTag, T]
  extends AccumulableParam[R, T] {

  def addAccumulator(growable: R, elem: T): R = {
    growable += elem
    growable
  }

  def addInPlace(t1: R, t2: R): R = {
    t1 ++= t2
    t1
  }

  def zero(initialValue: R): R = {
    // We need to clone initialValue, but it's hard to specify that R should also be Cloneable.
    // Instead we'll serialize it to a buffer and load it back.
    val ser = new JavaSerializer(new SparkConf(false)).newInstance()
    val copy = ser.deserialize[R](ser.serialize(initialValue))
    copy.clear()   // In case it contained stuff
    copy
  }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy