
org.apache.spark.examples.SparkKMeans.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.10 Show documentation
Show all versions of snappy-spark-examples_2.10 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples
import breeze.linalg.{Vector, DenseVector, squaredDistance}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._
/**
* K-means clustering.
*
* This is an example implementation for learning how to use Spark. For more conventional use,
* please refer to org.apache.spark.mllib.clustering.KMeans
*/
object SparkKMeans {
def parseVector(line: String): Vector[Double] = {
DenseVector(line.split(' ').map(_.toDouble))
}
def closestPoint(p: Vector[Double], centers: Array[Vector[Double]]): Int = {
var bestIndex = 0
var closest = Double.PositiveInfinity
for (i <- 0 until centers.length) {
val tempDist = squaredDistance(p, centers(i))
if (tempDist < closest) {
closest = tempDist
bestIndex = i
}
}
bestIndex
}
def showWarning() {
System.err.println(
"""WARN: This is a naive implementation of KMeans Clustering and is given as an example!
|Please use the KMeans method found in org.apache.spark.mllib.clustering
|for more conventional use.
""".stripMargin)
}
def main(args: Array[String]) {
if (args.length < 3) {
System.err.println("Usage: SparkKMeans ")
System.exit(1)
}
showWarning()
val sparkConf = new SparkConf().setAppName("SparkKMeans")
val sc = new SparkContext(sparkConf)
val lines = sc.textFile(args(0))
val data = lines.map(parseVector _).cache()
val K = args(1).toInt
val convergeDist = args(2).toDouble
val kPoints = data.takeSample(withReplacement = false, K, 42).toArray
var tempDist = 1.0
while(tempDist > convergeDist) {
val closest = data.map (p => (closestPoint(p, kPoints), (p, 1)))
val pointStats = closest.reduceByKey{case ((p1, c1), (p2, c2)) => (p1 + p2, c1 + c2)}
val newPoints = pointStats.map {pair =>
(pair._1, pair._2._1 * (1.0 / pair._2._2))}.collectAsMap()
tempDist = 0.0
for (i <- 0 until K) {
tempDist += squaredDistance(kPoints(i), newPoints(i))
}
for (newP <- newPoints) {
kPoints(newP._1) = newP._2
}
println("Finished iteration (delta = " + tempDist + ")")
}
println("Final centers:")
kPoints.foreach(println)
sc.stop()
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy