
org.apache.spark.examples.SparkTachyonHdfsLR.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.10 Show documentation
Show all versions of snappy-spark-examples_2.10 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples
import java.util.Random
import scala.math.exp
import breeze.linalg.{Vector, DenseVector}
import org.apache.hadoop.conf.Configuration
import org.apache.spark._
import org.apache.spark.scheduler.InputFormatInfo
import org.apache.spark.storage.StorageLevel
/**
* Logistic regression based classification.
* This example uses Tachyon to persist rdds during computation.
*
* This is an example implementation for learning how to use Spark. For more conventional use,
* please refer to either org.apache.spark.mllib.classification.LogisticRegressionWithSGD or
* org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS based on your needs.
*/
object SparkTachyonHdfsLR {
val D = 10 // Numer of dimensions
val rand = new Random(42)
def showWarning() {
System.err.println(
"""WARN: This is a naive implementation of Logistic Regression and is given as an example!
|Please use either org.apache.spark.mllib.classification.LogisticRegressionWithSGD or
|org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
|for more conventional use.
""".stripMargin)
}
case class DataPoint(x: Vector[Double], y: Double)
def parsePoint(line: String): DataPoint = {
val tok = new java.util.StringTokenizer(line, " ")
var y = tok.nextToken.toDouble
var x = new Array[Double](D)
var i = 0
while (i < D) {
x(i) = tok.nextToken.toDouble; i += 1
}
DataPoint(new DenseVector(x), y)
}
def main(args: Array[String]) {
showWarning()
val inputPath = args(0)
val sparkConf = new SparkConf().setAppName("SparkTachyonHdfsLR")
val conf = new Configuration()
val sc = new SparkContext(sparkConf,
InputFormatInfo.computePreferredLocations(
Seq(new InputFormatInfo(conf, classOf[org.apache.hadoop.mapred.TextInputFormat], inputPath))
))
val lines = sc.textFile(inputPath)
val points = lines.map(parsePoint _).persist(StorageLevel.OFF_HEAP)
val ITERATIONS = args(1).toInt
// Initialize w to a random value
var w = DenseVector.fill(D){2 * rand.nextDouble - 1}
println("Initial w: " + w)
for (i <- 1 to ITERATIONS) {
println("On iteration " + i)
val gradient = points.map { p =>
p.x * (1 / (1 + exp(-p.y * (w.dot(p.x)))) - 1) * p.y
}.reduce(_ + _)
w -= gradient
}
println("Final w: " + w)
sc.stop()
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy