
org.apache.spark.examples.SparkTachyonPi.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.10 Show documentation
Show all versions of snappy-spark-examples_2.10 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples
import scala.math.random
import org.apache.spark._
import org.apache.spark.storage.StorageLevel
/**
* Computes an approximation to pi
* This example uses Tachyon to persist rdds during computation.
*/
object SparkTachyonPi {
def main(args: Array[String]) {
val sparkConf = new SparkConf().setAppName("SparkTachyonPi")
val spark = new SparkContext(sparkConf)
val slices = if (args.length > 0) args(0).toInt else 2
val n = 100000 * slices
val rdd = spark.parallelize(1 to n, slices)
rdd.persist(StorageLevel.OFF_HEAP)
val count = rdd.map { i =>
val x = random * 2 - 1
val y = random * 2 - 1
if (x * x + y * y < 1) 1 else 0
}.reduce(_ + _)
println("Pi is roughly " + 4.0 * count / n)
spark.stop()
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy