
org.apache.spark.examples.ml.AFTSurvivalRegressionExample.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.10 Show documentation
Show all versions of snappy-spark-examples_2.10 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.ml
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkContext, SparkConf}
// $example on$
import org.apache.spark.ml.regression.AFTSurvivalRegression
import org.apache.spark.mllib.linalg.Vectors
// $example off$
/**
* An example for AFTSurvivalRegression.
*/
object AFTSurvivalRegressionExample {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("AFTSurvivalRegressionExample")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
// $example on$
val training = sqlContext.createDataFrame(Seq(
(1.218, 1.0, Vectors.dense(1.560, -0.605)),
(2.949, 0.0, Vectors.dense(0.346, 2.158)),
(3.627, 0.0, Vectors.dense(1.380, 0.231)),
(0.273, 1.0, Vectors.dense(0.520, 1.151)),
(4.199, 0.0, Vectors.dense(0.795, -0.226))
)).toDF("label", "censor", "features")
val quantileProbabilities = Array(0.3, 0.6)
val aft = new AFTSurvivalRegression()
.setQuantileProbabilities(quantileProbabilities)
.setQuantilesCol("quantiles")
val model = aft.fit(training)
// Print the coefficients, intercept and scale parameter for AFT survival regression
println(s"Coefficients: ${model.coefficients} Intercept: " +
s"${model.intercept} Scale: ${model.scale}")
model.transform(training).show(false)
// $example off$
sc.stop()
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy