
org.apache.spark.examples.ml.JavaKMeansExample Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.10 Show documentation
Show all versions of snappy-spark-examples_2.10 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.ml;
import java.util.regex.Pattern;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.catalyst.expressions.GenericRow;
// $example on$
import org.apache.spark.ml.clustering.KMeansModel;
import org.apache.spark.ml.clustering.KMeans;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.VectorUDT;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
// $example off$
/**
* An example demonstrating a k-means clustering.
* Run with
*
* bin/run-example ml.JavaKMeansExample
*
*/
public class JavaKMeansExample {
private static class ParsePoint implements Function {
private static final Pattern separator = Pattern.compile(" ");
@Override
public Row call(String line) {
String[] tok = separator.split(line);
double[] point = new double[tok.length];
for (int i = 0; i < tok.length; ++i) {
point[i] = Double.parseDouble(tok[i]);
}
Vector[] points = {Vectors.dense(point)};
return new GenericRow(points);
}
}
public static void main(String[] args) {
if (args.length != 2) {
System.err.println("Usage: ml.JavaKMeansExample ");
System.exit(1);
}
String inputFile = args[0];
int k = Integer.parseInt(args[1]);
// Parses the arguments
SparkConf conf = new SparkConf().setAppName("JavaKMeansExample");
JavaSparkContext jsc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(jsc);
// $example on$
// Loads data
JavaRDD points = jsc.textFile(inputFile).map(new ParsePoint());
StructField[] fields = {new StructField("features", new VectorUDT(), false, Metadata.empty())};
StructType schema = new StructType(fields);
DataFrame dataset = sqlContext.createDataFrame(points, schema);
// Trains a k-means model
KMeans kmeans = new KMeans()
.setK(k);
KMeansModel model = kmeans.fit(dataset);
// Shows the result
Vector[] centers = model.clusterCenters();
System.out.println("Cluster Centers: ");
for (Vector center: centers) {
System.out.println(center);
}
// $example off$
jsc.stop();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy