All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.examples.ml.JavaLDAExample Maven / Gradle / Ivy

There is a newer version: 1.6.2-6
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.ml;
// $example on$
import java.util.regex.Pattern;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.ml.clustering.LDA;
import org.apache.spark.ml.clustering.LDAModel;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.VectorUDT;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.catalyst.expressions.GenericRow;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
// $example off$

/**
 * An example demonstrating LDA
 * Run with
 * 
 * bin/run-example ml.JavaLDAExample
 * 
*/ public class JavaLDAExample { // $example on$ private static class ParseVector implements Function { private static final Pattern separator = Pattern.compile(" "); @Override public Row call(String line) { String[] tok = separator.split(line); double[] point = new double[tok.length]; for (int i = 0; i < tok.length; ++i) { point[i] = Double.parseDouble(tok[i]); } Vector[] points = {Vectors.dense(point)}; return new GenericRow(points); } } public static void main(String[] args) { String inputFile = "data/mllib/sample_lda_data.txt"; // Parses the arguments SparkConf conf = new SparkConf().setAppName("JavaLDAExample"); JavaSparkContext jsc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(jsc); // Loads data JavaRDD points = jsc.textFile(inputFile).map(new ParseVector()); StructField[] fields = {new StructField("features", new VectorUDT(), false, Metadata.empty())}; StructType schema = new StructType(fields); DataFrame dataset = sqlContext.createDataFrame(points, schema); // Trains a LDA model LDA lda = new LDA() .setK(10) .setMaxIter(10); LDAModel model = lda.fit(dataset); System.out.println(model.logLikelihood(dataset)); System.out.println(model.logPerplexity(dataset)); // Shows the result DataFrame topics = model.describeTopics(3); topics.show(false); model.transform(dataset).show(false); jsc.stop(); } // $example off$ }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy