
org.apache.spark.examples.ml.JavaNormalizerExample Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.10 Show documentation
Show all versions of snappy-spark-examples_2.10 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.ml;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.SQLContext;
// $example on$
import org.apache.spark.ml.feature.Normalizer;
import org.apache.spark.sql.DataFrame;
// $example off$
public class JavaNormalizerExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("JavaNormalizerExample");
JavaSparkContext jsc = new JavaSparkContext(conf);
SQLContext jsql = new SQLContext(jsc);
// $example on$
DataFrame dataFrame = jsql.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt");
// Normalize each Vector using $L^1$ norm.
Normalizer normalizer = new Normalizer()
.setInputCol("features")
.setOutputCol("normFeatures")
.setP(1.0);
DataFrame l1NormData = normalizer.transform(dataFrame);
l1NormData.show();
// Normalize each Vector using $L^\infty$ norm.
DataFrame lInfNormData =
normalizer.transform(dataFrame, normalizer.p().w(Double.POSITIVE_INFINITY));
lInfNormData.show();
// $example off$
jsc.stop();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy