All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.examples.ml.JavaSimpleTextClassificationPipeline Maven / Gradle / Ivy

There is a newer version: 1.6.2-6
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.ml;

import java.util.List;

import com.google.common.collect.Lists;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineModel;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.feature.HashingTF;
import org.apache.spark.ml.feature.Tokenizer;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;

/**
 * A simple text classification pipeline that recognizes "spark" from input text. It uses the Java
 * bean classes {@link LabeledDocument} and {@link Document} defined in the Scala counterpart of
 * this example {@link SimpleTextClassificationPipeline}. Run with
 * 
 * bin/run-example ml.JavaSimpleTextClassificationPipeline
 * 
*/ public class JavaSimpleTextClassificationPipeline { public static void main(String[] args) { SparkConf conf = new SparkConf().setAppName("JavaSimpleTextClassificationPipeline"); JavaSparkContext jsc = new JavaSparkContext(conf); SQLContext jsql = new SQLContext(jsc); // Prepare training documents, which are labeled. List localTraining = Lists.newArrayList( new LabeledDocument(0L, "a b c d e spark", 1.0), new LabeledDocument(1L, "b d", 0.0), new LabeledDocument(2L, "spark f g h", 1.0), new LabeledDocument(3L, "hadoop mapreduce", 0.0)); DataFrame training = jsql.createDataFrame(jsc.parallelize(localTraining), LabeledDocument.class); // Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr. Tokenizer tokenizer = new Tokenizer() .setInputCol("text") .setOutputCol("words"); HashingTF hashingTF = new HashingTF() .setNumFeatures(1000) .setInputCol(tokenizer.getOutputCol()) .setOutputCol("features"); LogisticRegression lr = new LogisticRegression() .setMaxIter(10) .setRegParam(0.001); Pipeline pipeline = new Pipeline() .setStages(new PipelineStage[] {tokenizer, hashingTF, lr}); // Fit the pipeline to training documents. PipelineModel model = pipeline.fit(training); // Prepare test documents, which are unlabeled. List localTest = Lists.newArrayList( new Document(4L, "spark i j k"), new Document(5L, "l m n"), new Document(6L, "spark hadoop spark"), new Document(7L, "apache hadoop")); DataFrame test = jsql.createDataFrame(jsc.parallelize(localTest), Document.class); // Make predictions on test documents. DataFrame predictions = model.transform(test); for (Row r: predictions.select("id", "text", "probability", "prediction").collect()) { System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> prob=" + r.get(2) + ", prediction=" + r.get(3)); } jsc.stop(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy