
org.apache.spark.examples.ml.JavaStandardScalerExample Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.10 Show documentation
Show all versions of snappy-spark-examples_2.10 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.ml;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.SQLContext;
// $example on$
import org.apache.spark.ml.feature.StandardScaler;
import org.apache.spark.ml.feature.StandardScalerModel;
import org.apache.spark.sql.DataFrame;
// $example off$
public class JavaStandardScalerExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("JavaStandardScalerExample");
JavaSparkContext jsc = new JavaSparkContext(conf);
SQLContext jsql = new SQLContext(jsc);
// $example on$
DataFrame dataFrame = jsql.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt");
StandardScaler scaler = new StandardScaler()
.setInputCol("features")
.setOutputCol("scaledFeatures")
.setWithStd(true)
.setWithMean(false);
// Compute summary statistics by fitting the StandardScaler
StandardScalerModel scalerModel = scaler.fit(dataFrame);
// Normalize each feature to have unit standard deviation.
DataFrame scaledData = scalerModel.transform(dataFrame);
scaledData.show();
// $example off$
jsc.stop();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy