
org.apache.spark.examples.ml.LDAExample.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.10 Show documentation
Show all versions of snappy-spark-examples_2.10 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.ml
// scalastyle:off println
import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.mllib.linalg.{VectorUDT, Vectors}
// $example on$
import org.apache.spark.ml.clustering.LDA
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.sql.types.{StructField, StructType}
// $example off$
/**
* An example demonstrating a LDA of ML pipeline.
* Run with
* {{{
* bin/run-example ml.LDAExample
* }}}
*/
object LDAExample {
final val FEATURES_COL = "features"
def main(args: Array[String]): Unit = {
val input = "data/mllib/sample_lda_data.txt"
// Creates a Spark context and a SQL context
val conf = new SparkConf().setAppName(s"${this.getClass.getSimpleName}")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
// $example on$
// Loads data
val rowRDD = sc.textFile(input).filter(_.nonEmpty)
.map(_.split(" ").map(_.toDouble)).map(Vectors.dense).map(Row(_))
val schema = StructType(Array(StructField(FEATURES_COL, new VectorUDT, false)))
val dataset = sqlContext.createDataFrame(rowRDD, schema)
// Trains a LDA model
val lda = new LDA()
.setK(10)
.setMaxIter(10)
.setFeaturesCol(FEATURES_COL)
val model = lda.fit(dataset)
val transformed = model.transform(dataset)
val ll = model.logLikelihood(dataset)
val lp = model.logPerplexity(dataset)
// describeTopics
val topics = model.describeTopics(3)
// Shows the result
topics.show(false)
transformed.show(false)
// $example off$
sc.stop()
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy