
org.apache.spark.examples.ml.QuantileDiscretizerExample.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.10 Show documentation
Show all versions of snappy-spark-examples_2.10 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.ml
// $example on$
import org.apache.spark.ml.feature.QuantileDiscretizer
// $example off$
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
object QuantileDiscretizerExample {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("QuantileDiscretizerExample")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
// $example on$
val data = Array((0, 18.0), (1, 19.0), (2, 8.0), (3, 5.0), (4, 2.2))
val df = sc.parallelize(data).toDF("id", "hour")
val discretizer = new QuantileDiscretizer()
.setInputCol("hour")
.setOutputCol("result")
.setNumBuckets(3)
val result = discretizer.fit(df).transform(df)
result.show()
// $example off$
sc.stop()
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy