All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.examples.ml.TokenizerExample.scala Maven / Gradle / Ivy

There is a newer version: 1.6.2-6
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.ml

// $example on$
import org.apache.spark.ml.feature.{RegexTokenizer, Tokenizer}
// $example off$
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}

object TokenizerExample {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("TokenizerExample")
    val sc = new SparkContext(conf)
    val sqlContext = new SQLContext(sc)

    // $example on$
    val sentenceDataFrame = sqlContext.createDataFrame(Seq(
      (0, "Hi I heard about Spark"),
      (1, "I wish Java could use case classes"),
      (2, "Logistic,regression,models,are,neat")
    )).toDF("label", "sentence")

    val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
    val regexTokenizer = new RegexTokenizer()
      .setInputCol("sentence")
      .setOutputCol("words")
      .setPattern("\\W") // alternatively .setPattern("\\w+").setGaps(false)

    val tokenized = tokenizer.transform(sentenceDataFrame)
    tokenized.select("words", "label").take(3).foreach(println)
    val regexTokenized = regexTokenizer.transform(sentenceDataFrame)
    regexTokenized.select("words", "label").take(3).foreach(println)
    // $example off$
    sc.stop()
  }
}
// scalastyle:on println




© 2015 - 2025 Weber Informatics LLC | Privacy Policy