
org.apache.spark.examples.mllib.DenseKMeans.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.10 Show documentation
Show all versions of snappy-spark-examples_2.10 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.mllib
import org.apache.log4j.{Level, Logger}
import scopt.OptionParser
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.clustering.KMeans
import org.apache.spark.mllib.linalg.Vectors
/**
* An example k-means app. Run with
* {{{
* ./bin/run-example org.apache.spark.examples.mllib.DenseKMeans [options]
* }}}
* If you use it as a template to create your own app, please use `spark-submit` to submit your app.
*/
object DenseKMeans {
object InitializationMode extends Enumeration {
type InitializationMode = Value
val Random, Parallel = Value
}
import InitializationMode._
case class Params(
input: String = null,
k: Int = -1,
numIterations: Int = 10,
initializationMode: InitializationMode = Parallel) extends AbstractParams[Params]
def main(args: Array[String]) {
val defaultParams = Params()
val parser = new OptionParser[Params]("DenseKMeans") {
head("DenseKMeans: an example k-means app for dense data.")
opt[Int]('k', "k")
.required()
.text(s"number of clusters, required")
.action((x, c) => c.copy(k = x))
opt[Int]("numIterations")
.text(s"number of iterations, default: ${defaultParams.numIterations}")
.action((x, c) => c.copy(numIterations = x))
opt[String]("initMode")
.text(s"initialization mode (${InitializationMode.values.mkString(",")}), " +
s"default: ${defaultParams.initializationMode}")
.action((x, c) => c.copy(initializationMode = InitializationMode.withName(x)))
arg[String]("")
.text("input paths to examples")
.required()
.action((x, c) => c.copy(input = x))
}
parser.parse(args, defaultParams).map { params =>
run(params)
}.getOrElse {
sys.exit(1)
}
}
def run(params: Params) {
val conf = new SparkConf().setAppName(s"DenseKMeans with $params")
val sc = new SparkContext(conf)
Logger.getRootLogger.setLevel(Level.WARN)
val examples = sc.textFile(params.input).map { line =>
Vectors.dense(line.split(' ').map(_.toDouble))
}.cache()
val numExamples = examples.count()
println(s"numExamples = $numExamples.")
val initMode = params.initializationMode match {
case Random => KMeans.RANDOM
case Parallel => KMeans.K_MEANS_PARALLEL
}
val model = new KMeans()
.setInitializationMode(initMode)
.setK(params.k)
.setMaxIterations(params.numIterations)
.run(examples)
val cost = model.computeCost(examples)
println(s"Total cost = $cost.")
sc.stop()
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy