All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.examples.mllib.JavaBinaryClassificationMetricsExample Maven / Gradle / Ivy

There is a newer version: 1.6.2-6
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.mllib;

// $example on$
import scala.Tuple2;

import org.apache.spark.api.java.*;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.mllib.classification.LogisticRegressionModel;
import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS;
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.util.MLUtils;
// $example off$
import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;

public class JavaBinaryClassificationMetricsExample {
  public static void main(String[] args) {
    SparkConf conf = new SparkConf().setAppName("Java Binary Classification Metrics Example");
    SparkContext sc = new SparkContext(conf);
    // $example on$
    String path = "data/mllib/sample_binary_classification_data.txt";
    JavaRDD data = MLUtils.loadLibSVMFile(sc, path).toJavaRDD();

    // Split initial RDD into two... [60% training data, 40% testing data].
    JavaRDD[] splits =
      data.randomSplit(new double[]{0.6, 0.4}, 11L);
    JavaRDD training = splits[0].cache();
    JavaRDD test = splits[1];

    // Run training algorithm to build the model.
    final LogisticRegressionModel model = new LogisticRegressionWithLBFGS()
      .setNumClasses(2)
      .run(training.rdd());

    // Clear the prediction threshold so the model will return probabilities
    model.clearThreshold();

    // Compute raw scores on the test set.
    JavaRDD> predictionAndLabels = test.map(
      new Function>() {
        public Tuple2 call(LabeledPoint p) {
          Double prediction = model.predict(p.features());
          return new Tuple2(prediction, p.label());
        }
      }
    );

    // Get evaluation metrics.
    BinaryClassificationMetrics metrics = new BinaryClassificationMetrics(predictionAndLabels.rdd());

    // Precision by threshold
    JavaRDD> precision = metrics.precisionByThreshold().toJavaRDD();
    System.out.println("Precision by threshold: " + precision.toArray());

    // Recall by threshold
    JavaRDD> recall = metrics.recallByThreshold().toJavaRDD();
    System.out.println("Recall by threshold: " + recall.toArray());

    // F Score by threshold
    JavaRDD> f1Score = metrics.fMeasureByThreshold().toJavaRDD();
    System.out.println("F1 Score by threshold: " + f1Score.toArray());

    JavaRDD> f2Score = metrics.fMeasureByThreshold(2.0).toJavaRDD();
    System.out.println("F2 Score by threshold: " + f2Score.toArray());

    // Precision-recall curve
    JavaRDD> prc = metrics.pr().toJavaRDD();
    System.out.println("Precision-recall curve: " + prc.toArray());

    // Thresholds
    JavaRDD thresholds = precision.map(
      new Function, Double>() {
        public Double call(Tuple2 t) {
          return new Double(t._1().toString());
        }
      }
    );

    // ROC Curve
    JavaRDD> roc = metrics.roc().toJavaRDD();
    System.out.println("ROC curve: " + roc.toArray());

    // AUPRC
    System.out.println("Area under precision-recall curve = " + metrics.areaUnderPR());

    // AUROC
    System.out.println("Area under ROC = " + metrics.areaUnderROC());

    // Save and load model
    model.save(sc, "target/tmp/LogisticRegressionModel");
    LogisticRegressionModel sameModel = LogisticRegressionModel.load(sc,
      "target/tmp/LogisticRegressionModel");
    // $example off$
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy