
org.apache.spark.examples.mllib.JavaIsotonicRegressionExample Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.10 Show documentation
Show all versions of snappy-spark-examples_2.10 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.mllib;
// $example on$
import scala.Tuple2;
import scala.Tuple3;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.JavaDoubleRDD;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.mllib.regression.IsotonicRegression;
import org.apache.spark.mllib.regression.IsotonicRegressionModel;
// $example off$
import org.apache.spark.SparkConf;
public class JavaIsotonicRegressionExample {
public static void main(String[] args) {
SparkConf sparkConf = new SparkConf().setAppName("JavaIsotonicRegressionExample");
JavaSparkContext jsc = new JavaSparkContext(sparkConf);
// $example on$
JavaRDD data = jsc.textFile("data/mllib/sample_isotonic_regression_data.txt");
// Create label, feature, weight tuples from input data with weight set to default value 1.0.
JavaRDD> parsedData = data.map(
new Function>() {
public Tuple3 call(String line) {
String[] parts = line.split(",");
return new Tuple3<>(new Double(parts[0]), new Double(parts[1]), 1.0);
}
}
);
// Split data into training (60%) and test (40%) sets.
JavaRDD>[] splits = parsedData.randomSplit(new double[]{0.6, 0.4}, 11L);
JavaRDD> training = splits[0];
JavaRDD> test = splits[1];
// Create isotonic regression model from training data.
// Isotonic parameter defaults to true so it is only shown for demonstration
final IsotonicRegressionModel model = new IsotonicRegression().setIsotonic(true).run(training);
// Create tuples of predicted and real labels.
JavaPairRDD predictionAndLabel = test.mapToPair(
new PairFunction, Double, Double>() {
@Override
public Tuple2 call(Tuple3 point) {
Double predictedLabel = model.predict(point._2());
return new Tuple2(predictedLabel, point._1());
}
}
);
// Calculate mean squared error between predicted and real labels.
Double meanSquaredError = new JavaDoubleRDD(predictionAndLabel.map(
new Function, Object>() {
@Override
public Object call(Tuple2 pl) {
return Math.pow(pl._1() - pl._2(), 2);
}
}
).rdd()).mean();
System.out.println("Mean Squared Error = " + meanSquaredError);
// Save and load model
model.save(jsc.sc(), "target/tmp/myIsotonicRegressionModel");
IsotonicRegressionModel sameModel = IsotonicRegressionModel.load(jsc.sc(), "target/tmp/myIsotonicRegressionModel");
// $example off$
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy