
org.apache.spark.examples.mllib.JavaRankingMetricsExample Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.10 Show documentation
Show all versions of snappy-spark-examples_2.10 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.mllib;
// $example on$
import java.util.*;
import scala.Tuple2;
import org.apache.spark.api.java.*;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.mllib.evaluation.RegressionMetrics;
import org.apache.spark.mllib.evaluation.RankingMetrics;
import org.apache.spark.mllib.recommendation.ALS;
import org.apache.spark.mllib.recommendation.MatrixFactorizationModel;
import org.apache.spark.mllib.recommendation.Rating;
// $example off$
import org.apache.spark.SparkConf;
public class JavaRankingMetricsExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("Java Ranking Metrics Example");
JavaSparkContext sc = new JavaSparkContext(conf);
// $example on$
String path = "data/mllib/sample_movielens_data.txt";
JavaRDD data = sc.textFile(path);
JavaRDD ratings = data.map(
new Function() {
public Rating call(String line) {
String[] parts = line.split("::");
return new Rating(Integer.parseInt(parts[0]), Integer.parseInt(parts[1]), Double
.parseDouble(parts[2]) - 2.5);
}
}
);
ratings.cache();
// Train an ALS model
final MatrixFactorizationModel model = ALS.train(JavaRDD.toRDD(ratings), 10, 10, 0.01);
// Get top 10 recommendations for every user and scale ratings from 0 to 1
JavaRDD> userRecs = model.recommendProductsForUsers(10).toJavaRDD();
JavaRDD> userRecsScaled = userRecs.map(
new Function, Tuple2
© 2015 - 2025 Weber Informatics LLC | Privacy Policy