
org.apache.spark.examples.mllib.RegressionMetricsExample.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.10 Show documentation
Show all versions of snappy-spark-examples_2.10 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.mllib
// $example on$
import org.apache.spark.mllib.regression.LinearRegressionWithSGD
import org.apache.spark.mllib.evaluation.RegressionMetrics
import org.apache.spark.mllib.util.MLUtils
// $example off$
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
object RegressionMetricsExample {
def main(args: Array[String]) : Unit = {
val conf = new SparkConf().setAppName("RegressionMetricsExample")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
// $example on$
// Load the data
val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_linear_regression_data.txt").cache()
// Build the model
val numIterations = 100
val model = LinearRegressionWithSGD.train(data, numIterations)
// Get predictions
val valuesAndPreds = data.map{ point =>
val prediction = model.predict(point.features)
(prediction, point.label)
}
// Instantiate metrics object
val metrics = new RegressionMetrics(valuesAndPreds)
// Squared error
println(s"MSE = ${metrics.meanSquaredError}")
println(s"RMSE = ${metrics.rootMeanSquaredError}")
// R-squared
println(s"R-squared = ${metrics.r2}")
// Mean absolute error
println(s"MAE = ${metrics.meanAbsoluteError}")
// Explained variance
println(s"Explained variance = ${metrics.explainedVariance}")
// $example off$
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy