
org.apache.spark.examples.mllib.SampledRDDs.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.10 Show documentation
Show all versions of snappy-spark-examples_2.10 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.mllib
import org.apache.spark.mllib.util.MLUtils
import scopt.OptionParser
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._
/**
* An example app for randomly generated and sampled RDDs. Run with
* {{{
* bin/run-example org.apache.spark.examples.mllib.SampledRDDs
* }}}
* If you use it as a template to create your own app, please use `spark-submit` to submit your app.
*/
object SampledRDDs {
case class Params(input: String = "data/mllib/sample_binary_classification_data.txt")
extends AbstractParams[Params]
def main(args: Array[String]) {
val defaultParams = Params()
val parser = new OptionParser[Params]("SampledRDDs") {
head("SampledRDDs: an example app for randomly generated and sampled RDDs.")
opt[String]("input")
.text(s"Input path to labeled examples in LIBSVM format, default: ${defaultParams.input}")
.action((x, c) => c.copy(input = x))
note(
"""
|For example, the following command runs this app:
|
| bin/spark-submit --class org.apache.spark.examples.mllib.SampledRDDs \
| examples/target/scala-*/spark-examples-*.jar
""".stripMargin)
}
parser.parse(args, defaultParams).map { params =>
run(params)
} getOrElse {
sys.exit(1)
}
}
def run(params: Params) {
val conf = new SparkConf().setAppName(s"SampledRDDs with $params")
val sc = new SparkContext(conf)
val fraction = 0.1 // fraction of data to sample
val examples = MLUtils.loadLibSVMFile(sc, params.input)
val numExamples = examples.count()
if (numExamples == 0) {
throw new RuntimeException("Error: Data file had no samples to load.")
}
println(s"Loaded data with $numExamples examples from file: ${params.input}")
// Example: RDD.sample() and RDD.takeSample()
val expectedSampleSize = (numExamples * fraction).toInt
println(s"Sampling RDD using fraction $fraction. Expected sample size = $expectedSampleSize.")
val sampledRDD = examples.sample(withReplacement = true, fraction = fraction)
println(s" RDD.sample(): sample has ${sampledRDD.count()} examples")
val sampledArray = examples.takeSample(withReplacement = true, num = expectedSampleSize)
println(s" RDD.takeSample(): sample has ${sampledArray.size} examples")
println()
// Example: RDD.sampleByKey() and RDD.sampleByKeyExact()
val keyedRDD = examples.map { lp => (lp.label.toInt, lp.features) }
println(s" Keyed data using label (Int) as key ==> Orig")
// Count examples per label in original data.
val keyCounts = keyedRDD.countByKey()
// Subsample, and count examples per label in sampled data. (approximate)
val fractions = keyCounts.keys.map((_, fraction)).toMap
val sampledByKeyRDD = keyedRDD.sampleByKey(withReplacement = true, fractions = fractions)
val keyCountsB = sampledByKeyRDD.countByKey()
val sizeB = keyCountsB.values.sum
println(s" Sampled $sizeB examples using approximate stratified sampling (by label)." +
" ==> Approx Sample")
// Subsample, and count examples per label in sampled data. (approximate)
val sampledByKeyRDDExact =
keyedRDD.sampleByKeyExact(withReplacement = true, fractions = fractions)
val keyCountsBExact = sampledByKeyRDDExact.countByKey()
val sizeBExact = keyCountsBExact.values.sum
println(s" Sampled $sizeBExact examples using exact stratified sampling (by label)." +
" ==> Exact Sample")
// Compare samples
println(s" \tFractions of examples with key")
println(s"Key\tOrig\tApprox Sample\tExact Sample")
keyCounts.keys.toSeq.sorted.foreach { key =>
val origFrac = keyCounts(key) / numExamples.toDouble
val approxFrac = if (sizeB != 0) {
keyCountsB.getOrElse(key, 0L) / sizeB.toDouble
} else {
0
}
val exactFrac = if (sizeBExact != 0) {
keyCountsBExact.getOrElse(key, 0L) / sizeBExact.toDouble
} else {
0
}
println(s"$key\t$origFrac\t$approxFrac\t$exactFrac")
}
sc.stop()
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy