
org.apache.spark.examples.mllib.StreamingKMeansExample.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.10 Show documentation
Show all versions of snappy-spark-examples_2.10 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.mllib
import org.apache.spark.SparkConf
import org.apache.spark.mllib.clustering.StreamingKMeans
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* Estimate clusters on one stream of data and make predictions
* on another stream, where the data streams arrive as text files
* into two different directories.
*
* The rows of the training text files must be vector data in the form
* `[x1,x2,x3,...,xn]`
* Where n is the number of dimensions.
*
* The rows of the test text files must be labeled data in the form
* `(y,[x1,x2,x3,...,xn])`
* Where y is some identifier. n must be the same for train and test.
*
* Usage:
* StreamingKMeansExample
*
* To run on your local machine using the two directories `trainingDir` and `testDir`,
* with updates every 5 seconds, 2 dimensions per data point, and 3 clusters, call:
* $ bin/run-example mllib.StreamingKMeansExample trainingDir testDir 5 3 2
*
* As you add text files to `trainingDir` the clusters will continuously update.
* Anytime you add text files to `testDir`, you'll see predicted labels using the current model.
*
*/
object StreamingKMeansExample {
def main(args: Array[String]) {
if (args.length != 5) {
System.err.println(
"Usage: StreamingKMeansExample " +
" ")
System.exit(1)
}
val conf = new SparkConf().setMaster("local").setAppName("StreamingKMeansExample")
val ssc = new StreamingContext(conf, Seconds(args(2).toLong))
val trainingData = ssc.textFileStream(args(0)).map(Vectors.parse)
val testData = ssc.textFileStream(args(1)).map(LabeledPoint.parse)
val model = new StreamingKMeans()
.setK(args(3).toInt)
.setDecayFactor(1.0)
.setRandomCenters(args(4).toInt, 0.0)
model.trainOn(trainingData)
model.predictOnValues(testData.map(lp => (lp.label, lp.features))).print()
ssc.start()
ssc.awaitTermination()
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy