
org.apache.spark.examples.streaming.KafkaWordCount.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.10 Show documentation
Show all versions of snappy-spark-examples_2.10 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.streaming
import java.util.HashMap
import org.apache.kafka.clients.producer.{ProducerConfig, KafkaProducer, ProducerRecord}
import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka._
import org.apache.spark.SparkConf
/**
* Consumes messages from one or more topics in Kafka and does wordcount.
* Usage: KafkaWordCount
* is a list of one or more zookeeper servers that make quorum
* is the name of kafka consumer group
* is a list of one or more kafka topics to consume from
* is the number of threads the kafka consumer should use
*
* Example:
* `$ bin/run-example \
* org.apache.spark.examples.streaming.KafkaWordCount zoo01,zoo02,zoo03 \
* my-consumer-group topic1,topic2 1`
*/
object KafkaWordCount {
def main(args: Array[String]) {
if (args.length < 4) {
System.err.println("Usage: KafkaWordCount ")
System.exit(1)
}
StreamingExamples.setStreamingLogLevels()
val Array(zkQuorum, group, topics, numThreads) = args
val sparkConf = new SparkConf().setAppName("KafkaWordCount")
val ssc = new StreamingContext(sparkConf, Seconds(2))
ssc.checkpoint("checkpoint")
val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap
val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1L))
.reduceByKeyAndWindow(_ + _, _ - _, Minutes(10), Seconds(2), 2)
wordCounts.print()
ssc.start()
ssc.awaitTermination()
}
}
// Produces some random words between 1 and 100.
object KafkaWordCountProducer {
def main(args: Array[String]) {
if (args.length < 4) {
System.err.println("Usage: KafkaWordCountProducer " +
" ")
System.exit(1)
}
val Array(brokers, topic, messagesPerSec, wordsPerMessage) = args
// Zookeeper connection properties
val props = new HashMap[String, Object]()
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers)
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringSerializer")
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringSerializer")
val producer = new KafkaProducer[String, String](props)
// Send some messages
while(true) {
(1 to messagesPerSec.toInt).foreach { messageNum =>
val str = (1 to wordsPerMessage.toInt).map(x => scala.util.Random.nextInt(10).toString)
.mkString(" ")
val message = new ProducerRecord[String, String](topic, null, str)
producer.send(message)
}
Thread.sleep(1000)
}
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy