
org.apache.spark.examples.streaming.TwitterAlgebirdCMS.scala Maven / Gradle / Ivy
Show all versions of snappy-spark-examples_2.10 Show documentation
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.streaming
import com.twitter.algebird._
import com.twitter.algebird.CMSHasherImplicits._
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext._
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.twitter._
// scalastyle:off
/**
* Illustrates the use of the Count-Min Sketch, from Twitter's Algebird library, to compute
* windowed and global Top-K estimates of user IDs occurring in a Twitter stream.
*
* Note that since Algebird's implementation currently only supports Long inputs,
* the example operates on Long IDs. Once the implementation supports other inputs (such as String),
* the same approach could be used for computing popular topics for example.
*
*
*
* This blog post has a good overview of the Count-Min Sketch (CMS). The CMS is a data
* structure for approximate frequency estimation in data streams (e.g. Top-K elements, frequency
* of any given element, etc), that uses space sub-linear in the number of elements in the
* stream. Once elements are added to the CMS, the estimated count of an element can be computed,
* as well as "heavy-hitters" that occur more than a threshold percentage of the overall total
* count.
*
* Algebird's implementation is a monoid, so we can succinctly merge two CMS instances in the
* reduce operation.
*/
// scalastyle:on
object TwitterAlgebirdCMS {
def main(args: Array[String]) {
StreamingExamples.setStreamingLogLevels()
// CMS parameters
val DELTA = 1E-3
val EPS = 0.01
val SEED = 1
val PERC = 0.001
// K highest frequency elements to take
val TOPK = 10
val filters = args
val sparkConf = new SparkConf().setAppName("TwitterAlgebirdCMS")
val ssc = new StreamingContext(sparkConf, Seconds(10))
val stream = TwitterUtils.createStream(ssc, None, filters, StorageLevel.MEMORY_ONLY_SER_2)
val users = stream.map(status => status.getUser.getId)
// val cms = new CountMinSketchMonoid(EPS, DELTA, SEED, PERC)
val cms = TopPctCMS.monoid[Long](EPS, DELTA, SEED, PERC)
var globalCMS = cms.zero
val mm = new MapMonoid[Long, Int]()
var globalExact = Map[Long, Int]()
val approxTopUsers = users.mapPartitions(ids => {
ids.map(id => cms.create(id))
}).reduce(_ ++ _)
val exactTopUsers = users.map(id => (id, 1))
.reduceByKey((a, b) => a + b)
approxTopUsers.foreachRDD(rdd => {
if (rdd.count() != 0) {
val partial = rdd.first()
val partialTopK = partial.heavyHitters.map(id =>
(id, partial.frequency(id).estimate)).toSeq.sortBy(_._2).reverse.slice(0, TOPK)
globalCMS ++= partial
val globalTopK = globalCMS.heavyHitters.map(id =>
(id, globalCMS.frequency(id).estimate)).toSeq.sortBy(_._2).reverse.slice(0, TOPK)
println("Approx heavy hitters at %2.2f%% threshold this batch: %s".format(PERC,
partialTopK.mkString("[", ",", "]")))
println("Approx heavy hitters at %2.2f%% threshold overall: %s".format(PERC,
globalTopK.mkString("[", ",", "]")))
}
})
exactTopUsers.foreachRDD(rdd => {
if (rdd.count() != 0) {
val partialMap = rdd.collect().toMap
val partialTopK = rdd.map(
{case (id, count) => (count, id)})
.sortByKey(ascending = false).take(TOPK)
globalExact = mm.plus(globalExact.toMap, partialMap)
val globalTopK = globalExact.toSeq.sortBy(_._2).reverse.slice(0, TOPK)
println("Exact heavy hitters this batch: %s".format(partialTopK.mkString("[", ",", "]")))
println("Exact heavy hitters overall: %s".format(globalTopK.mkString("[", ",", "]")))
}
})
ssc.start()
ssc.awaitTermination()
}
}
// scalastyle:on println