
org.apache.spark.examples.streaming.TwitterAlgebirdHLL.scala Maven / Gradle / Ivy
Show all versions of snappy-spark-examples_2.10 Show documentation
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.streaming
import com.twitter.algebird.HyperLogLogMonoid
import com.twitter.algebird.HyperLogLog._
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.twitter._
import org.apache.spark.SparkConf
// scalastyle:off
/**
* Illustrates the use of the HyperLogLog algorithm, from Twitter's Algebird library, to compute
* a windowed and global estimate of the unique user IDs occurring in a Twitter stream.
*
*
* This
* blog post and this
*
* blog post
* have good overviews of HyperLogLog (HLL). HLL is a memory-efficient datastructure for
* estimating the cardinality of a data stream, i.e. the number of unique elements.
*
* Algebird's implementation is a monoid, so we can succinctly merge two HLL instances in the
* reduce operation.
*/
// scalastyle:on
object TwitterAlgebirdHLL {
def main(args: Array[String]) {
StreamingExamples.setStreamingLogLevels()
/** Bit size parameter for HyperLogLog, trades off accuracy vs size */
val BIT_SIZE = 12
val filters = args
val sparkConf = new SparkConf().setAppName("TwitterAlgebirdHLL")
val ssc = new StreamingContext(sparkConf, Seconds(5))
val stream = TwitterUtils.createStream(ssc, None, filters, StorageLevel.MEMORY_ONLY_SER)
val users = stream.map(status => status.getUser.getId)
val hll = new HyperLogLogMonoid(BIT_SIZE)
var globalHll = hll.zero
var userSet: Set[Long] = Set()
val approxUsers = users.mapPartitions(ids => {
ids.map(id => hll(id))
}).reduce(_ + _)
val exactUsers = users.map(id => Set(id)).reduce(_ ++ _)
approxUsers.foreachRDD(rdd => {
if (rdd.count() != 0) {
val partial = rdd.first()
globalHll += partial
println("Approx distinct users this batch: %d".format(partial.estimatedSize.toInt))
println("Approx distinct users overall: %d".format(globalHll.estimatedSize.toInt))
}
})
exactUsers.foreachRDD(rdd => {
if (rdd.count() != 0) {
val partial = rdd.first()
userSet ++= partial
println("Exact distinct users this batch: %d".format(partial.size))
println("Exact distinct users overall: %d".format(userSet.size))
println("Error rate: %2.5f%%".format(((globalHll.estimatedSize / userSet.size.toDouble) - 1
) * 100))
}
})
ssc.start()
ssc.awaitTermination()
}
}
// scalastyle:on println