All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.examples.JavaPageRank Maven / Gradle / Ivy

There is a newer version: 2.1.3.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples;

import java.util.ArrayList;
import java.util.List;
import java.util.Iterator;
import java.util.regex.Pattern;

import scala.Tuple2;

import com.google.common.collect.Iterables;

import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFlatMapFunction;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.sql.SparkSession;

/**
 * Computes the PageRank of URLs from an input file. Input file should
 * be in format of:
 * URL         neighbor URL
 * URL         neighbor URL
 * URL         neighbor URL
 * ...
 * where URL and their neighbors are separated by space(s).
 *
 * This is an example implementation for learning how to use Spark. For more conventional use,
 * please refer to org.apache.spark.graphx.lib.PageRank
 *
 * Example Usage:
 * 
 * bin/run-example JavaPageRank data/mllib/pagerank_data.txt 10
 * 
*/ public final class JavaPageRank { private static final Pattern SPACES = Pattern.compile("\\s+"); static void showWarning() { String warning = "WARN: This is a naive implementation of PageRank " + "and is given as an example! \n" + "Please use the PageRank implementation found in " + "org.apache.spark.graphx.lib.PageRank for more conventional use."; System.err.println(warning); } private static class Sum implements Function2 { @Override public Double call(Double a, Double b) { return a + b; } } public static void main(String[] args) throws Exception { if (args.length < 2) { System.err.println("Usage: JavaPageRank "); System.exit(1); } showWarning(); SparkSession spark = SparkSession .builder() .appName("JavaPageRank") .getOrCreate(); // Loads in input file. It should be in format of: // URL neighbor URL // URL neighbor URL // URL neighbor URL // ... JavaRDD lines = spark.read().textFile(args[0]).javaRDD(); // Loads all URLs from input file and initialize their neighbors. JavaPairRDD> links = lines.mapToPair( new PairFunction() { @Override public Tuple2 call(String s) { String[] parts = SPACES.split(s); return new Tuple2<>(parts[0], parts[1]); } }).distinct().groupByKey().cache(); // Loads all URLs with other URL(s) link to from input file and initialize ranks of them to one. JavaPairRDD ranks = links.mapValues(new Function, Double>() { @Override public Double call(Iterable rs) { return 1.0; } }); // Calculates and updates URL ranks continuously using PageRank algorithm. for (int current = 0; current < Integer.parseInt(args[1]); current++) { // Calculates URL contributions to the rank of other URLs. JavaPairRDD contribs = links.join(ranks).values() .flatMapToPair(new PairFlatMapFunction, Double>, String, Double>() { @Override public Iterator> call(Tuple2, Double> s) { int urlCount = Iterables.size(s._1); List> results = new ArrayList<>(); for (String n : s._1) { results.add(new Tuple2<>(n, s._2() / urlCount)); } return results.iterator(); } }); // Re-calculates URL ranks based on neighbor contributions. ranks = contribs.reduceByKey(new Sum()).mapValues(new Function() { @Override public Double call(Double sum) { return 0.15 + sum * 0.85; } }); } // Collects all URL ranks and dump them to console. List> output = ranks.collect(); for (Tuple2 tuple : output) { System.out.println(tuple._1() + " has rank: " + tuple._2() + "."); } spark.stop(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy