All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.examples.ml.JavaKMeansExample Maven / Gradle / Ivy

There is a newer version: 2.1.3.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.ml;

// $example on$
import org.apache.spark.ml.clustering.KMeansModel;
import org.apache.spark.ml.clustering.KMeans;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
// $example off$
import org.apache.spark.sql.SparkSession;


/**
 * An example demonstrating k-means clustering.
 * Run with
 * 
 * bin/run-example ml.JavaKMeansExample
 * 
*/ public class JavaKMeansExample { public static void main(String[] args) { // Create a SparkSession. SparkSession spark = SparkSession .builder() .appName("JavaKMeansExample") .getOrCreate(); // $example on$ // Loads data. Dataset dataset = spark.read().format("libsvm").load("data/mllib/sample_kmeans_data.txt"); // Trains a k-means model. KMeans kmeans = new KMeans().setK(2).setSeed(1L); KMeansModel model = kmeans.fit(dataset); // Evaluate clustering by computing Within Set Sum of Squared Errors. double WSSSE = model.computeCost(dataset); System.out.println("Within Set Sum of Squared Errors = " + WSSSE); // Shows the result. Vector[] centers = model.clusterCenters(); System.out.println("Cluster Centers: "); for (Vector center: centers) { System.out.println(center); } // $example off$ spark.stop(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy