
org.apache.spark.examples.ml.JavaKMeansExample Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.11 Show documentation
Show all versions of snappy-spark-examples_2.11 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.ml;
// $example on$
import org.apache.spark.ml.clustering.KMeansModel;
import org.apache.spark.ml.clustering.KMeans;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
// $example off$
import org.apache.spark.sql.SparkSession;
/**
* An example demonstrating k-means clustering.
* Run with
*
* bin/run-example ml.JavaKMeansExample
*
*/
public class JavaKMeansExample {
public static void main(String[] args) {
// Create a SparkSession.
SparkSession spark = SparkSession
.builder()
.appName("JavaKMeansExample")
.getOrCreate();
// $example on$
// Loads data.
Dataset dataset = spark.read().format("libsvm").load("data/mllib/sample_kmeans_data.txt");
// Trains a k-means model.
KMeans kmeans = new KMeans().setK(2).setSeed(1L);
KMeansModel model = kmeans.fit(dataset);
// Evaluate clustering by computing Within Set Sum of Squared Errors.
double WSSSE = model.computeCost(dataset);
System.out.println("Within Set Sum of Squared Errors = " + WSSSE);
// Shows the result.
Vector[] centers = model.clusterCenters();
System.out.println("Cluster Centers: ");
for (Vector center: centers) {
System.out.println(center);
}
// $example off$
spark.stop();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy