All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.examples.ml.JavaMulticlassLogisticRegressionWithElasticNetExample Maven / Gradle / Ivy

There is a newer version: 2.1.3.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.ml;

// $example on$
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.classification.LogisticRegressionModel;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
// $example off$

public class JavaMulticlassLogisticRegressionWithElasticNetExample {
    public static void main(String[] args) {
        SparkSession spark = SparkSession
                .builder()
                .appName("JavaMulticlassLogisticRegressionWithElasticNetExample")
                .getOrCreate();

        // $example on$
        // Load training data
        Dataset training = spark.read().format("libsvm")
                .load("data/mllib/sample_multiclass_classification_data.txt");

        LogisticRegression lr = new LogisticRegression()
                .setMaxIter(10)
                .setRegParam(0.3)
                .setElasticNetParam(0.8);

        // Fit the model
        LogisticRegressionModel lrModel = lr.fit(training);

        // Print the coefficients and intercept for multinomial logistic regression
        System.out.println("Coefficients: \n"
                + lrModel.coefficientMatrix() + " \nIntercept: " + lrModel.interceptVector());
        // $example off$

        spark.stop();
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy