All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.examples.ml.JavaOneVsRestExample Maven / Gradle / Ivy

There is a newer version: 2.1.3.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.ml;

// $example on$
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.classification.OneVsRest;
import org.apache.spark.ml.classification.OneVsRestModel;
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
// $example off$
import org.apache.spark.sql.SparkSession;


/**
 * An example of Multiclass to Binary Reduction with One Vs Rest,
 * using Logistic Regression as the base classifier.
 * Run with
 * 
 * bin/run-example ml.JavaOneVsRestExample
 * 
*/ public class JavaOneVsRestExample { public static void main(String[] args) { SparkSession spark = SparkSession .builder() .appName("JavaOneVsRestExample") .getOrCreate(); // $example on$ // load data file. Dataset inputData = spark.read().format("libsvm") .load("data/mllib/sample_multiclass_classification_data.txt"); // generate the train/test split. Dataset[] tmp = inputData.randomSplit(new double[]{0.8, 0.2}); Dataset train = tmp[0]; Dataset test = tmp[1]; // configure the base classifier. LogisticRegression classifier = new LogisticRegression() .setMaxIter(10) .setTol(1E-6) .setFitIntercept(true); // instantiate the One Vs Rest Classifier. OneVsRest ovr = new OneVsRest().setClassifier(classifier); // train the multiclass model. OneVsRestModel ovrModel = ovr.fit(train); // score the model on test data. Dataset predictions = ovrModel.transform(test) .select("prediction", "label"); // obtain evaluator. MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator() .setMetricName("accuracy"); // compute the classification error on test data. double accuracy = evaluator.evaluate(predictions); System.out.println("Test Error = " + (1 - accuracy)); // $example off$ spark.stop(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy