
org.apache.spark.examples.ml.JavaOneVsRestExample Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.11 Show documentation
Show all versions of snappy-spark-examples_2.11 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.ml;
// $example on$
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.classification.OneVsRest;
import org.apache.spark.ml.classification.OneVsRestModel;
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
// $example off$
import org.apache.spark.sql.SparkSession;
/**
* An example of Multiclass to Binary Reduction with One Vs Rest,
* using Logistic Regression as the base classifier.
* Run with
*
* bin/run-example ml.JavaOneVsRestExample
*
*/
public class JavaOneVsRestExample {
public static void main(String[] args) {
SparkSession spark = SparkSession
.builder()
.appName("JavaOneVsRestExample")
.getOrCreate();
// $example on$
// load data file.
Dataset inputData = spark.read().format("libsvm")
.load("data/mllib/sample_multiclass_classification_data.txt");
// generate the train/test split.
Dataset[] tmp = inputData.randomSplit(new double[]{0.8, 0.2});
Dataset train = tmp[0];
Dataset test = tmp[1];
// configure the base classifier.
LogisticRegression classifier = new LogisticRegression()
.setMaxIter(10)
.setTol(1E-6)
.setFitIntercept(true);
// instantiate the One Vs Rest Classifier.
OneVsRest ovr = new OneVsRest().setClassifier(classifier);
// train the multiclass model.
OneVsRestModel ovrModel = ovr.fit(train);
// score the model on test data.
Dataset predictions = ovrModel.transform(test)
.select("prediction", "label");
// obtain evaluator.
MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator()
.setMetricName("accuracy");
// compute the classification error on test data.
double accuracy = evaluator.evaluate(predictions);
System.out.println("Test Error = " + (1 - accuracy));
// $example off$
spark.stop();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy