All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.examples.mllib.HypothesisTestingExample.scala Maven / Gradle / Ivy

There is a newer version: 2.1.3.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.mllib

import org.apache.spark.{SparkConf, SparkContext}
// $example on$
import org.apache.spark.mllib.linalg._
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.stat.Statistics
import org.apache.spark.mllib.stat.test.ChiSqTestResult
import org.apache.spark.rdd.RDD
// $example off$

object HypothesisTestingExample {

  def main(args: Array[String]) {

    val conf = new SparkConf().setAppName("HypothesisTestingExample")
    val sc = new SparkContext(conf)

    // $example on$
    // a vector composed of the frequencies of events
    val vec: Vector = Vectors.dense(0.1, 0.15, 0.2, 0.3, 0.25)

    // compute the goodness of fit. If a second vector to test against is not supplied
    // as a parameter, the test runs against a uniform distribution.
    val goodnessOfFitTestResult = Statistics.chiSqTest(vec)
    // summary of the test including the p-value, degrees of freedom, test statistic, the method
    // used, and the null hypothesis.
    println(s"$goodnessOfFitTestResult\n")

    // a contingency matrix. Create a dense matrix ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
    val mat: Matrix = Matrices.dense(3, 2, Array(1.0, 3.0, 5.0, 2.0, 4.0, 6.0))

    // conduct Pearson's independence test on the input contingency matrix
    val independenceTestResult = Statistics.chiSqTest(mat)
    // summary of the test including the p-value, degrees of freedom
    println(s"$independenceTestResult\n")

    val obs: RDD[LabeledPoint] =
      sc.parallelize(
        Seq(
          LabeledPoint(1.0, Vectors.dense(1.0, 0.0, 3.0)),
          LabeledPoint(1.0, Vectors.dense(1.0, 2.0, 0.0)),
          LabeledPoint(-1.0, Vectors.dense(-1.0, 0.0, -0.5)
          )
        )
      ) // (feature, label) pairs.

    // The contingency table is constructed from the raw (feature, label) pairs and used to conduct
    // the independence test. Returns an array containing the ChiSquaredTestResult for every feature
    // against the label.
    val featureTestResults: Array[ChiSqTestResult] = Statistics.chiSqTest(obs)
    featureTestResults.zipWithIndex.foreach { case (k, v) =>
      println("Column " + (v + 1).toString + ":")
      println(k)
    }  // summary of the test
    // $example off$

    sc.stop()
  }
}
// scalastyle:on println





© 2015 - 2025 Weber Informatics LLC | Privacy Policy