
org.apache.spark.examples.mllib.JavaNaiveBayesExample Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.11 Show documentation
Show all versions of snappy-spark-examples_2.11 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.mllib;
// $example on$
import scala.Tuple2;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.classification.NaiveBayes;
import org.apache.spark.mllib.classification.NaiveBayesModel;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.util.MLUtils;
// $example off$
import org.apache.spark.SparkConf;
public class JavaNaiveBayesExample {
public static void main(String[] args) {
SparkConf sparkConf = new SparkConf().setAppName("JavaNaiveBayesExample");
JavaSparkContext jsc = new JavaSparkContext(sparkConf);
// $example on$
String path = "data/mllib/sample_libsvm_data.txt";
JavaRDD inputData = MLUtils.loadLibSVMFile(jsc.sc(), path).toJavaRDD();
JavaRDD[] tmp = inputData.randomSplit(new double[]{0.6, 0.4});
JavaRDD training = tmp[0]; // training set
JavaRDD test = tmp[1]; // test set
final NaiveBayesModel model = NaiveBayes.train(training.rdd(), 1.0);
JavaPairRDD predictionAndLabel =
test.mapToPair(new PairFunction() {
@Override
public Tuple2 call(LabeledPoint p) {
return new Tuple2<>(model.predict(p.features()), p.label());
}
});
double accuracy = predictionAndLabel.filter(new Function, Boolean>() {
@Override
public Boolean call(Tuple2 pl) {
return pl._1().equals(pl._2());
}
}).count() / (double) test.count();
// Save and load model
model.save(jsc.sc(), "target/tmp/myNaiveBayesModel");
NaiveBayesModel sameModel = NaiveBayesModel.load(jsc.sc(), "target/tmp/myNaiveBayesModel");
// $example off$
jsc.stop();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy