
org.apache.spark.examples.mllib.JavaRecommendationExample Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.11 Show documentation
Show all versions of snappy-spark-examples_2.11 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.mllib;
// $example on$
import scala.Tuple2;
import org.apache.spark.api.java.*;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.mllib.recommendation.ALS;
import org.apache.spark.mllib.recommendation.MatrixFactorizationModel;
import org.apache.spark.mllib.recommendation.Rating;
import org.apache.spark.SparkConf;
// $example off$
public class JavaRecommendationExample {
public static void main(String[] args) {
// $example on$
SparkConf conf = new SparkConf().setAppName("Java Collaborative Filtering Example");
JavaSparkContext jsc = new JavaSparkContext(conf);
// Load and parse the data
String path = "data/mllib/als/test.data";
JavaRDD data = jsc.textFile(path);
JavaRDD ratings = data.map(
new Function() {
public Rating call(String s) {
String[] sarray = s.split(",");
return new Rating(Integer.parseInt(sarray[0]), Integer.parseInt(sarray[1]),
Double.parseDouble(sarray[2]));
}
}
);
// Build the recommendation model using ALS
int rank = 10;
int numIterations = 10;
MatrixFactorizationModel model = ALS.train(JavaRDD.toRDD(ratings), rank, numIterations, 0.01);
// Evaluate the model on rating data
JavaRDD> userProducts = ratings.map(
new Function>() {
public Tuple2
© 2015 - 2025 Weber Informatics LLC | Privacy Policy