
org.apache.spark.examples.mllib.JavaRegressionMetricsExample Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.11 Show documentation
Show all versions of snappy-spark-examples_2.11 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.mllib;
// $example on$
import scala.Tuple2;
import org.apache.spark.api.java.*;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.regression.LinearRegressionModel;
import org.apache.spark.mllib.regression.LinearRegressionWithSGD;
import org.apache.spark.mllib.evaluation.RegressionMetrics;
import org.apache.spark.SparkConf;
// $example off$
public class JavaRegressionMetricsExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("Java Regression Metrics Example");
JavaSparkContext sc = new JavaSparkContext(conf);
// $example on$
// Load and parse the data
String path = "data/mllib/sample_linear_regression_data.txt";
JavaRDD data = sc.textFile(path);
JavaRDD parsedData = data.map(
new Function() {
public LabeledPoint call(String line) {
String[] parts = line.split(" ");
double[] v = new double[parts.length - 1];
for (int i = 1; i < parts.length - 1; i++) {
v[i - 1] = Double.parseDouble(parts[i].split(":")[1]);
}
return new LabeledPoint(Double.parseDouble(parts[0]), Vectors.dense(v));
}
}
);
parsedData.cache();
// Building the model
int numIterations = 100;
final LinearRegressionModel model = LinearRegressionWithSGD.train(JavaRDD.toRDD(parsedData),
numIterations);
// Evaluate model on training examples and compute training error
JavaRDD> valuesAndPreds = parsedData.map(
new Function>() {
public Tuple2
© 2015 - 2025 Weber Informatics LLC | Privacy Policy