All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.examples.mllib.RegressionMetricsExample.scala Maven / Gradle / Ivy

There is a newer version: 2.1.3.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
// scalastyle:off println

package org.apache.spark.examples.mllib

// $example on$
import org.apache.spark.mllib.evaluation.RegressionMetrics
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.mllib.regression.{LabeledPoint, LinearRegressionWithSGD}
// $example off$
import org.apache.spark.sql.SparkSession

@deprecated("Use ml.regression.LinearRegression and the resulting model summary for metrics",
  "2.0.0")
object RegressionMetricsExample {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder
      .appName("RegressionMetricsExample")
      .getOrCreate()
    // $example on$
    // Load the data
    val data = spark
      .read.format("libsvm").load("data/mllib/sample_linear_regression_data.txt")
      .rdd.map(row => LabeledPoint(row.getDouble(0), row.get(1).asInstanceOf[Vector]))
      .cache()

    // Build the model
    val numIterations = 100
    val model = LinearRegressionWithSGD.train(data, numIterations)

    // Get predictions
    val valuesAndPreds = data.map{ point =>
      val prediction = model.predict(point.features)
      (prediction, point.label)
    }

    // Instantiate metrics object
    val metrics = new RegressionMetrics(valuesAndPreds)

    // Squared error
    println(s"MSE = ${metrics.meanSquaredError}")
    println(s"RMSE = ${metrics.rootMeanSquaredError}")

    // R-squared
    println(s"R-squared = ${metrics.r2}")

    // Mean absolute error
    println(s"MAE = ${metrics.meanAbsoluteError}")

    // Explained variance
    println(s"Explained variance = ${metrics.explainedVariance}")
    // $example off$

    spark.stop()
  }
}
// scalastyle:on println





© 2015 - 2025 Weber Informatics LLC | Privacy Policy