
org.apache.spark.examples.mllib.StreamingTestExample.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-examples_2.11 Show documentation
Show all versions of snappy-spark-examples_2.11 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.mllib
import org.apache.spark.SparkConf
import org.apache.spark.mllib.stat.test.{BinarySample, StreamingTest}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.util.Utils
/**
* Perform streaming testing using Welch's 2-sample t-test on a stream of data, where the data
* stream arrives as text files in a directory. Stops when the two groups are statistically
* significant (p-value < 0.05) or after a user-specified timeout in number of batches is exceeded.
*
* The rows of the text files must be in the form `Boolean, Double`. For example:
* false, -3.92
* true, 99.32
*
* Usage:
* StreamingTestExample
*
* To run on your local machine using the directory `dataDir` with 5 seconds between each batch and
* a timeout after 100 insignificant batches, call:
* $ bin/run-example mllib.StreamingTestExample dataDir 5 100
*
* As you add text files to `dataDir` the significance test wil continually update every
* `batchDuration` seconds until the test becomes significant (p-value < 0.05) or the number of
* batches processed exceeds `numBatchesTimeout`.
*/
object StreamingTestExample {
def main(args: Array[String]) {
if (args.length != 3) {
// scalastyle:off println
System.err.println(
"Usage: StreamingTestExample " +
" ")
// scalastyle:on println
System.exit(1)
}
val dataDir = args(0)
val batchDuration = Seconds(args(1).toLong)
val numBatchesTimeout = args(2).toInt
val conf = new SparkConf().setMaster("local").setAppName("StreamingTestExample")
val ssc = new StreamingContext(conf, batchDuration)
ssc.checkpoint {
val dir = Utils.createTempDir()
dir.toString
}
// $example on$
val data = ssc.textFileStream(dataDir).map(line => line.split(",") match {
case Array(label, value) => BinarySample(label.toBoolean, value.toDouble)
})
val streamingTest = new StreamingTest()
.setPeacePeriod(0)
.setWindowSize(0)
.setTestMethod("welch")
val out = streamingTest.registerStream(data)
out.print()
// $example off$
// Stop processing if test becomes significant or we time out
var timeoutCounter = numBatchesTimeout
out.foreachRDD { rdd =>
timeoutCounter -= 1
val anySignificant = rdd.map(_.pValue < 0.05).fold(false)(_ || _)
if (timeoutCounter == 0 || anySignificant) rdd.context.stop()
}
ssc.start()
ssc.awaitTermination()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy