All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.examples.mllib.TFIDFExample.scala Maven / Gradle / Ivy

There is a newer version: 2.1.3.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.mllib

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
// $example on$
import org.apache.spark.mllib.feature.{HashingTF, IDF}
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.rdd.RDD
// $example off$

object TFIDFExample {

  def main(args: Array[String]): Unit = {

    val conf = new SparkConf().setAppName("TFIDFExample")
    val sc = new SparkContext(conf)

    // $example on$
    // Load documents (one per line).
    val documents: RDD[Seq[String]] = sc.textFile("data/mllib/kmeans_data.txt")
      .map(_.split(" ").toSeq)

    val hashingTF = new HashingTF()
    val tf: RDD[Vector] = hashingTF.transform(documents)

    // While applying HashingTF only needs a single pass to the data, applying IDF needs two passes:
    // First to compute the IDF vector and second to scale the term frequencies by IDF.
    tf.cache()
    val idf = new IDF().fit(tf)
    val tfidf: RDD[Vector] = idf.transform(tf)

    // spark.mllib IDF implementation provides an option for ignoring terms which occur in less than
    // a minimum number of documents. In such cases, the IDF for these terms is set to 0.
    // This feature can be used by passing the minDocFreq value to the IDF constructor.
    val idfIgnore = new IDF(minDocFreq = 2).fit(tf)
    val tfidfIgnore: RDD[Vector] = idfIgnore.transform(tf)
    // $example off$

    println("tfidf: ")
    tfidf.foreach(x => println(x))

    println("tfidfIgnore: ")
    tfidfIgnore.foreach(x => println(x))

    sc.stop()
  }
}
// scalastyle:on println




© 2015 - 2025 Weber Informatics LLC | Privacy Policy