
org.apache.spark.mllib.evaluation.binary.BinaryClassificationMetricComputers.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-mllib_2.10 Show documentation
Show all versions of snappy-spark-mllib_2.10 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.mllib.evaluation.binary
/**
* Trait for a binary classification evaluation metric computer.
*/
private[evaluation] trait BinaryClassificationMetricComputer extends Serializable {
def apply(c: BinaryConfusionMatrix): Double
}
/** Precision. Defined as 1.0 when there are no positive examples. */
private[evaluation] object Precision extends BinaryClassificationMetricComputer {
override def apply(c: BinaryConfusionMatrix): Double = {
val totalPositives = c.numTruePositives + c.numFalsePositives
if (totalPositives == 0) {
1.0
} else {
c.numTruePositives.toDouble / totalPositives
}
}
}
/** False positive rate. Defined as 0.0 when there are no negative examples. */
private[evaluation] object FalsePositiveRate extends BinaryClassificationMetricComputer {
override def apply(c: BinaryConfusionMatrix): Double = {
if (c.numNegatives == 0) {
0.0
} else {
c.numFalsePositives.toDouble / c.numNegatives
}
}
}
/** Recall. Defined as 0.0 when there are no positive examples. */
private[evaluation] object Recall extends BinaryClassificationMetricComputer {
override def apply(c: BinaryConfusionMatrix): Double = {
if (c.numPositives == 0) {
0.0
} else {
c.numTruePositives.toDouble / c.numPositives
}
}
}
/**
* F-Measure. Defined as 0 if both precision and recall are 0. EG in the case that all examples
* are false positives.
* @param beta the beta constant in F-Measure
* @see http://en.wikipedia.org/wiki/F1_score
*/
private[evaluation] case class FMeasure(beta: Double) extends BinaryClassificationMetricComputer {
private val beta2 = beta * beta
override def apply(c: BinaryConfusionMatrix): Double = {
val precision = Precision(c)
val recall = Recall(c)
if (precision + recall == 0) {
0.0
} else {
(1.0 + beta2) * (precision * recall) / (beta2 * precision + recall)
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy