org.apache.spark.sql.execution.ShuffledRowRDD.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution
import java.util.Arrays
import org.apache.spark._
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
/**
* The [[Partition]] used by [[ShuffledRowRDD]]. A post-shuffle partition
* (identified by `postShufflePartitionIndex`) contains a range of pre-shuffle partitions
* (`startPreShufflePartitionIndex` to `endPreShufflePartitionIndex - 1`, inclusive).
*/
private final class ShuffledRowRDDPartition(
val postShufflePartitionIndex: Int,
val startPreShufflePartitionIndex: Int,
val endPreShufflePartitionIndex: Int) extends Partition {
override val index: Int = postShufflePartitionIndex
override def hashCode(): Int = postShufflePartitionIndex
}
/**
* A dummy partitioner for use with records whose partition ids have been pre-computed (i.e. for
* use on RDDs of (Int, Row) pairs where the Int is a partition id in the expected range).
*/
private class PartitionIdPassthrough(override val numPartitions: Int) extends Partitioner {
override def getPartition(key: Any): Int = key.asInstanceOf[Int]
}
/**
* A Partitioner that might group together one or more partitions from the parent.
*
* @param parent a parent partitioner
* @param partitionStartIndices indices of partitions in parent that should create new partitions
* in child (this should be an array of increasing partition IDs). For example, if we have a
* parent with 5 partitions, and partitionStartIndices is [0, 2, 4], we get three output
* partitions, corresponding to partition ranges [0, 1], [2, 3] and [4] of the parent partitioner.
*/
class CoalescedPartitioner(val parent: Partitioner, val partitionStartIndices: Array[Int])
extends Partitioner {
@transient private lazy val parentPartitionMapping: Array[Int] = {
val n = parent.numPartitions
val result = new Array[Int](n)
for (i <- 0 until partitionStartIndices.length) {
val start = partitionStartIndices(i)
val end = if (i < partitionStartIndices.length - 1) partitionStartIndices(i + 1) else n
for (j <- start until end) {
result(j) = i
}
}
result
}
override def numPartitions: Int = partitionStartIndices.length
override def getPartition(key: Any): Int = {
parentPartitionMapping(parent.getPartition(key))
}
override def equals(other: Any): Boolean = other match {
case c: CoalescedPartitioner =>
c.parent == parent && Arrays.equals(c.partitionStartIndices, partitionStartIndices)
case _ =>
false
}
override def hashCode(): Int = 31 * parent.hashCode() + Arrays.hashCode(partitionStartIndices)
}
/**
* This is a specialized version of [[org.apache.spark.rdd.ShuffledRDD]] that is optimized for
* shuffling rows instead of Java key-value pairs. Note that something like this should eventually
* be implemented in Spark core, but that is blocked by some more general refactorings to shuffle
* interfaces / internals.
*
* This RDD takes a [[ShuffleDependency]] (`dependency`),
* and a optional array of partition start indices as input arguments
* (`specifiedPartitionStartIndices`).
*
* The `dependency` has the parent RDD of this RDD, which represents the dataset before shuffle
* (i.e. map output). Elements of this RDD are (partitionId, Row) pairs.
* Partition ids should be in the range [0, numPartitions - 1].
* `dependency.partitioner` is the original partitioner used to partition
* map output, and `dependency.partitioner.numPartitions` is the number of pre-shuffle partitions
* (i.e. the number of partitions of the map output).
*
* When `specifiedPartitionStartIndices` is defined, `specifiedPartitionStartIndices.length`
* will be the number of post-shuffle partitions. For this case, the `i`th post-shuffle
* partition includes `specifiedPartitionStartIndices[i]` to
* `specifiedPartitionStartIndices[i+1] - 1` (inclusive).
*
* When `specifiedPartitionStartIndices` is not defined, there will be
* `dependency.partitioner.numPartitions` post-shuffle partitions. For this case,
* a post-shuffle partition is created for every pre-shuffle partition.
*/
class ShuffledRowRDD(
var dependency: ShuffleDependency[Int, InternalRow, InternalRow],
specifiedPartitionStartIndices: Option[Array[Int]] = None)
extends RDD[InternalRow](dependency.rdd.context, Nil) {
private[this] val numPreShufflePartitions = dependency.partitioner.numPartitions
private[this] val partitionStartIndices: Array[Int] = specifiedPartitionStartIndices match {
case Some(indices) => indices
case None =>
// When specifiedPartitionStartIndices is not defined, every post-shuffle partition
// corresponds to a pre-shuffle partition.
(0 until numPreShufflePartitions).toArray
}
private[this] val part: Partitioner =
new CoalescedPartitioner(dependency.partitioner, partitionStartIndices)
override def getDependencies: Seq[Dependency[_]] = List(dependency)
override val partitioner: Option[Partitioner] = Some(part)
override def getPartitions: Array[Partition] = {
assert(partitionStartIndices.length == part.numPartitions)
Array.tabulate[Partition](partitionStartIndices.length) { i =>
val startIndex = partitionStartIndices(i)
val endIndex =
if (i < partitionStartIndices.length - 1) {
partitionStartIndices(i + 1)
} else {
numPreShufflePartitions
}
new ShuffledRowRDDPartition(i, startIndex, endIndex)
}
}
override def getPreferredLocations(partition: Partition): Seq[String] = {
val tracker = SparkEnv.get.mapOutputTracker.asInstanceOf[MapOutputTrackerMaster]
val dep = dependencies.head.asInstanceOf[ShuffleDependency[_, _, _]]
tracker.getPreferredLocationsForShuffle(dep, partition.index)
}
override def compute(split: Partition, context: TaskContext): Iterator[InternalRow] = {
val shuffledRowPartition = split.asInstanceOf[ShuffledRowRDDPartition]
// The range of pre-shuffle partitions that we are fetching at here is
// [startPreShufflePartitionIndex, endPreShufflePartitionIndex - 1].
val reader =
SparkEnv.get.shuffleManager.getReader(
dependency.shuffleHandle,
shuffledRowPartition.startPreShufflePartitionIndex,
shuffledRowPartition.endPreShufflePartitionIndex,
context)
reader.read().asInstanceOf[Iterator[Product2[Int, InternalRow]]].map(_._2)
}
override def clearDependencies() {
super.clearDependencies()
dependency = null
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy