org.apache.spark.sql.execution.joins.BroadcastLeftSemiJoinHash.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution.joins
import org.apache.spark.{InternalAccumulator, TaskContext}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.execution.{BinaryNode, SparkPlan}
import org.apache.spark.sql.execution.metric.SQLMetrics
/**
* Build the right table's join keys into a HashSet, and iteratively go through the left
* table, to find the if join keys are in the Hash set.
*/
case class BroadcastLeftSemiJoinHash(
leftKeys: Seq[Expression],
rightKeys: Seq[Expression],
left: SparkPlan,
right: SparkPlan,
condition: Option[Expression]) extends BinaryNode with HashSemiJoin {
override private[sql] lazy val metrics = Map(
"numLeftRows" -> SQLMetrics.createLongMetric(sparkContext, "number of left rows"),
"numRightRows" -> SQLMetrics.createLongMetric(sparkContext, "number of right rows"),
"numOutputRows" -> SQLMetrics.createLongMetric(sparkContext, "number of output rows"))
protected override def doExecute(): RDD[InternalRow] = {
val numLeftRows = longMetric("numLeftRows")
val numRightRows = longMetric("numRightRows")
val numOutputRows = longMetric("numOutputRows")
val input = right.execute().map { row =>
numRightRows += 1
row.copy()
}.collect()
if (condition.isEmpty) {
val hashSet = buildKeyHashSet(input.toIterator, SQLMetrics.nullLongMetric)
val broadcastedRelation = sparkContext.broadcast(hashSet)
left.execute().mapPartitionsInternal { streamIter =>
hashSemiJoin(streamIter, numLeftRows, broadcastedRelation.value, numOutputRows)
}
} else {
val hashRelation =
HashedRelation(input.toIterator, SQLMetrics.nullLongMetric, rightKeyGenerator, input.size)
val broadcastedRelation = sparkContext.broadcast(hashRelation)
left.execute().mapPartitionsInternal { streamIter =>
val hashedRelation = broadcastedRelation.value
hashedRelation match {
case unsafe: UnsafeHashedRelation =>
TaskContext.get().internalMetricsToAccumulators(
InternalAccumulator.PEAK_EXECUTION_MEMORY).add(unsafe.getUnsafeSize)
case _ =>
}
hashSemiJoin(streamIter, numLeftRows, hashedRelation, numOutputRows)
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy