org.apache.spark.sql.execution.joins.LeftSemiJoinBNL.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution.joins
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.{LeftAnti, LeftSemi, LeftSemiJoin}
import org.apache.spark.sql.catalyst.plans.physical.Partitioning
import org.apache.spark.sql.execution.{BinaryNode, SparkPlan}
import org.apache.spark.sql.execution.metric.SQLMetrics
/**
* Using BroadcastNestedLoopJoin to calculate left semi join result when there's no join keys
* for hash join.
*/
case class LeftSemiJoinBNL(
streamed: SparkPlan,
broadcast: SparkPlan,
condition: Option[Expression],
jt: LeftSemiJoin)
extends BinaryNode {
// TODO: Override requiredChildDistribution.
override private[sql] lazy val metrics = Map(
"numLeftRows" -> SQLMetrics.createLongMetric(sparkContext, "number of left rows"),
"numRightRows" -> SQLMetrics.createLongMetric(sparkContext, "number of right rows"),
"numOutputRows" -> SQLMetrics.createLongMetric(sparkContext, "number of output rows"))
override def outputPartitioning: Partitioning = streamed.outputPartitioning
override def output: Seq[Attribute] = left.output
override def outputsUnsafeRows: Boolean = streamed.outputsUnsafeRows
override def canProcessUnsafeRows: Boolean = true
/** The Streamed Relation */
override def left: SparkPlan = streamed
/** The Broadcast relation */
override def right: SparkPlan = broadcast
@transient private lazy val boundCondition =
newPredicate(condition.getOrElse(Literal(true)), left.output ++ right.output)
protected override def doExecute(): RDD[InternalRow] = {
val numLeftRows = longMetric("numLeftRows")
val numRightRows = longMetric("numRightRows")
val numOutputRows = longMetric("numOutputRows")
val broadcastedRelation =
sparkContext.broadcast(broadcast.execute().map { row =>
numRightRows += 1
row.copy()
}.collect().toIndexedSeq)
streamed.execute().mapPartitions { streamedIter =>
val joinedRow = new JoinedRow
streamedIter.filter(streamedRow => {
numLeftRows += 1
var i = 0
var matched = false
while (i < broadcastedRelation.value.size && !matched) {
val broadcastedRow = broadcastedRelation.value(i)
if (boundCondition(joinedRow(streamedRow, broadcastedRow))) {
matched = true
}
i += 1
}
if (matched) {
numOutputRows += 1
}
jt match {
case LeftSemi => matched
case LeftAnti => !matched
}
})
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy