org.apache.spark.sql.UserDefinedFunction.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of snappy-spark-sql_2.10 Show documentation
Show all versions of snappy-spark-sql_2.10 Show documentation
SnappyData distributed data store and execution engine
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql
import java.util.{List => JList, Map => JMap}
import org.apache.spark.Accumulator
import org.apache.spark.annotation.Experimental
import org.apache.spark.api.python.PythonBroadcast
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.sql.catalyst.expressions.{Expression, ScalaUDF}
import org.apache.spark.sql.execution.PythonUDF
import org.apache.spark.sql.types.DataType
/**
* A user-defined function. To create one, use the `udf` functions in [[functions]].
* As an example:
* {{{
* // Defined a UDF that returns true or false based on some numeric score.
* val predict = udf((score: Double) => if (score > 0.5) true else false)
*
* // Projects a column that adds a prediction column based on the score column.
* df.select( predict(df("score")) )
* }}}
*
* @since 1.3.0
*/
@Experimental
case class UserDefinedFunction protected[sql] (
f: AnyRef,
dataType: DataType,
inputTypes: Seq[DataType] = Nil) {
def apply(exprs: Column*): Column = {
Column(ScalaUDF(f, dataType, exprs.map(_.expr), inputTypes))
}
}
/**
* A user-defined Python function. To create one, use the `pythonUDF` functions in [[functions]].
* This is used by Python API.
*/
private[sql] case class UserDefinedPythonFunction(
name: String,
command: Array[Byte],
envVars: JMap[String, String],
pythonIncludes: JList[String],
pythonExec: String,
pythonVer: String,
broadcastVars: JList[Broadcast[PythonBroadcast]],
accumulator: Accumulator[JList[Array[Byte]]],
dataType: DataType) {
def builder(e: Seq[Expression]): PythonUDF = {
PythonUDF(name, command, envVars, pythonIncludes, pythonExec, pythonVer, broadcastVars,
accumulator, dataType, e)
}
/** Returns a [[Column]] that will evaluate to calling this UDF with the given input. */
def apply(exprs: Column*): Column = {
val udf = builder(exprs.map(_.expr))
Column(udf)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy