io.airlift.compress.zstd.FiniteStateEntropy Maven / Gradle / Ivy
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.airlift.compress.zstd;
import static io.airlift.compress.zstd.BitInputStream.peekBits;
import static io.airlift.compress.zstd.Constants.SIZE_OF_INT;
import static io.airlift.compress.zstd.Constants.SIZE_OF_LONG;
import static io.airlift.compress.zstd.Constants.SIZE_OF_SHORT;
import static io.airlift.compress.zstd.UnsafeUtil.UNSAFE;
import static io.airlift.compress.zstd.Util.checkArgument;
import static io.airlift.compress.zstd.Util.verify;
import static sun.misc.Unsafe.ARRAY_BYTE_BASE_OFFSET;
class FiniteStateEntropy
{
public static final int MAX_SYMBOL = 255;
public static final int MAX_TABLE_LOG = 12;
public static final int MIN_TABLE_LOG = 5;
private static final int[] REST_TO_BEAT = new int[] {0, 473195, 504333, 520860, 550000, 700000, 750000, 830000};
private static final short UNASSIGNED = -2;
private FiniteStateEntropy()
{
}
public static int decompress(FiniteStateEntropy.Table table, final Object inputBase, final long inputAddress, final long inputLimit, byte[] outputBuffer)
{
final Object outputBase = outputBuffer;
final long outputAddress = ARRAY_BYTE_BASE_OFFSET;
final long outputLimit = outputAddress + outputBuffer.length;
long input = inputAddress;
long output = outputAddress;
// initialize bit stream
BitInputStream.Initializer initializer = new BitInputStream.Initializer(inputBase, input, inputLimit);
initializer.initialize();
int bitsConsumed = initializer.getBitsConsumed();
long currentAddress = initializer.getCurrentAddress();
long bits = initializer.getBits();
// initialize first FSE stream
int state1 = (int) peekBits(bitsConsumed, bits, table.log2Size);
bitsConsumed += table.log2Size;
BitInputStream.Loader loader = new BitInputStream.Loader(inputBase, input, currentAddress, bits, bitsConsumed);
loader.load();
bits = loader.getBits();
bitsConsumed = loader.getBitsConsumed();
currentAddress = loader.getCurrentAddress();
// initialize second FSE stream
int state2 = (int) peekBits(bitsConsumed, bits, table.log2Size);
bitsConsumed += table.log2Size;
loader = new BitInputStream.Loader(inputBase, input, currentAddress, bits, bitsConsumed);
loader.load();
bits = loader.getBits();
bitsConsumed = loader.getBitsConsumed();
currentAddress = loader.getCurrentAddress();
byte[] symbols = table.symbol;
byte[] numbersOfBits = table.numberOfBits;
int[] newStates = table.newState;
// decode 4 symbols per loop
while (output <= outputLimit - 4) {
int numberOfBits;
UNSAFE.putByte(outputBase, output, symbols[state1]);
numberOfBits = numbersOfBits[state1];
state1 = (int) (newStates[state1] + peekBits(bitsConsumed, bits, numberOfBits));
bitsConsumed += numberOfBits;
UNSAFE.putByte(outputBase, output + 1, symbols[state2]);
numberOfBits = numbersOfBits[state2];
state2 = (int) (newStates[state2] + peekBits(bitsConsumed, bits, numberOfBits));
bitsConsumed += numberOfBits;
UNSAFE.putByte(outputBase, output + 2, symbols[state1]);
numberOfBits = numbersOfBits[state1];
state1 = (int) (newStates[state1] + peekBits(bitsConsumed, bits, numberOfBits));
bitsConsumed += numberOfBits;
UNSAFE.putByte(outputBase, output + 3, symbols[state2]);
numberOfBits = numbersOfBits[state2];
state2 = (int) (newStates[state2] + peekBits(bitsConsumed, bits, numberOfBits));
bitsConsumed += numberOfBits;
output += SIZE_OF_INT;
loader = new BitInputStream.Loader(inputBase, input, currentAddress, bits, bitsConsumed);
boolean done = loader.load();
bitsConsumed = loader.getBitsConsumed();
bits = loader.getBits();
currentAddress = loader.getCurrentAddress();
if (done) {
break;
}
}
while (true) {
verify(output <= outputLimit - 2, input, "Output buffer is too small");
UNSAFE.putByte(outputBase, output++, symbols[state1]);
int numberOfBits = numbersOfBits[state1];
state1 = (int) (newStates[state1] + peekBits(bitsConsumed, bits, numberOfBits));
bitsConsumed += numberOfBits;
loader = new BitInputStream.Loader(inputBase, input, currentAddress, bits, bitsConsumed);
loader.load();
bitsConsumed = loader.getBitsConsumed();
bits = loader.getBits();
currentAddress = loader.getCurrentAddress();
if (loader.isOverflow()) {
UNSAFE.putByte(outputBase, output++, symbols[state2]);
break;
}
verify(output <= outputLimit - 2, input, "Output buffer is too small");
UNSAFE.putByte(outputBase, output++, symbols[state2]);
int numberOfBits1 = numbersOfBits[state2];
state2 = (int) (newStates[state2] + peekBits(bitsConsumed, bits, numberOfBits1));
bitsConsumed += numberOfBits1;
loader = new BitInputStream.Loader(inputBase, input, currentAddress, bits, bitsConsumed);
loader.load();
bitsConsumed = loader.getBitsConsumed();
bits = loader.getBits();
currentAddress = loader.getCurrentAddress();
if (loader.isOverflow()) {
UNSAFE.putByte(outputBase, output++, symbols[state1]);
break;
}
}
return (int) (output - outputAddress);
}
public static int compress(Object outputBase, long outputAddress, int outputSize, byte[] input, int inputSize, FseCompressionTable table)
{
return compress(outputBase, outputAddress, outputSize, input, ARRAY_BYTE_BASE_OFFSET, inputSize, table);
}
public static int compress(Object outputBase, long outputAddress, int outputSize, Object inputBase, long inputAddress, int inputSize, FseCompressionTable table)
{
checkArgument(outputSize >= SIZE_OF_LONG, "Output buffer too small");
final long start = inputAddress;
final long inputLimit = start + inputSize;
long input = inputLimit;
if (inputSize <= 2) {
return 0;
}
BitOutputStream stream = new BitOutputStream(outputBase, outputAddress, outputSize);
int state1;
int state2;
if ((inputSize & 1) != 0) {
input--;
state1 = table.begin(UNSAFE.getByte(inputBase, input));
input--;
state2 = table.begin(UNSAFE.getByte(inputBase, input));
input--;
state1 = table.encode(stream, state1, UNSAFE.getByte(inputBase, input));
stream.flush();
}
else {
input--;
state2 = table.begin(UNSAFE.getByte(inputBase, input));
input--;
state1 = table.begin(UNSAFE.getByte(inputBase, input));
}
// join to mod 4
inputSize -= 2;
if ((SIZE_OF_LONG * 8 > MAX_TABLE_LOG * 4 + 7) && (inputSize & 2) != 0) { /* test bit 2 */
input--;
state2 = table.encode(stream, state2, UNSAFE.getByte(inputBase, input));
input--;
state1 = table.encode(stream, state1, UNSAFE.getByte(inputBase, input));
stream.flush();
}
// 2 or 4 encoding per loop
while (input > start) {
input--;
state2 = table.encode(stream, state2, UNSAFE.getByte(inputBase, input));
if (SIZE_OF_LONG * 8 < MAX_TABLE_LOG * 2 + 7) {
stream.flush();
}
input--;
state1 = table.encode(stream, state1, UNSAFE.getByte(inputBase, input));
if (SIZE_OF_LONG * 8 > MAX_TABLE_LOG * 4 + 7) {
input--;
state2 = table.encode(stream, state2, UNSAFE.getByte(inputBase, input));
input--;
state1 = table.encode(stream, state1, UNSAFE.getByte(inputBase, input));
}
stream.flush();
}
table.finish(stream, state2);
table.finish(stream, state1);
return stream.close();
}
public static int optimalTableLog(int maxTableLog, int inputSize, int maxSymbol)
{
if (inputSize <= 1) {
throw new IllegalArgumentException(); // not supported. Use RLE instead
}
int result = maxTableLog;
result = Math.min(result, Util.highestBit((inputSize - 1)) - 2); // we may be able to reduce accuracy if input is small
// Need a minimum to safely represent all symbol values
result = Math.max(result, Util.minTableLog(inputSize, maxSymbol));
result = Math.max(result, MIN_TABLE_LOG);
result = Math.min(result, MAX_TABLE_LOG);
return result;
}
public static int normalizeCounts(short[] normalizedCounts, int tableLog, int[] counts, int total, int maxSymbol)
{
checkArgument(tableLog >= MIN_TABLE_LOG, "Unsupported FSE table size");
checkArgument(tableLog <= MAX_TABLE_LOG, "FSE table size too large");
checkArgument(tableLog >= Util.minTableLog(total, maxSymbol), "FSE table size too small");
long scale = 62 - tableLog;
long step = (1L << 62) / total;
long vstep = 1L << (scale - 20);
int stillToDistribute = 1 << tableLog;
int largest = 0;
short largestProbability = 0;
int lowThreshold = total >>> tableLog;
for (int symbol = 0; symbol <= maxSymbol; symbol++) {
if (counts[symbol] == total) {
throw new IllegalArgumentException(); // TODO: should have been RLE-compressed by upper layers
}
if (counts[symbol] == 0) {
normalizedCounts[symbol] = 0;
continue;
}
if (counts[symbol] <= lowThreshold) {
normalizedCounts[symbol] = -1;
stillToDistribute--;
}
else {
short probability = (short) ((counts[symbol] * step) >>> scale);
if (probability < 8) {
long restToBeat = vstep * REST_TO_BEAT[probability];
long delta = counts[symbol] * step - (((long) probability) << scale);
if (delta > restToBeat) {
probability++;
}
}
if (probability > largestProbability) {
largestProbability = probability;
largest = symbol;
}
normalizedCounts[symbol] = probability;
stillToDistribute -= probability;
}
}
if (-stillToDistribute >= (normalizedCounts[largest] >>> 1)) {
// corner case. Need another normalization method
// TODO size_t const errorCode = FSE_normalizeM2(normalizedCounter, tableLog, count, total, maxSymbolValue);
normalizeCounts2(normalizedCounts, tableLog, counts, total, maxSymbol);
}
else {
normalizedCounts[largest] += (short) stillToDistribute;
}
return tableLog;
}
private static int normalizeCounts2(short[] normalizedCounts, int tableLog, int[] counts, int total, int maxSymbol)
{
int distributed = 0;
int lowThreshold = total >>> tableLog; // minimum count below which frequency in the normalized table is "too small" (~ < 1)
int lowOne = (total * 3) >>> (tableLog + 1); // 1.5 * lowThreshold. If count in (lowThreshold, lowOne] => assign frequency 1
for (int i = 0; i <= maxSymbol; i++) {
if (counts[i] == 0) {
normalizedCounts[i] = 0;
}
else if (counts[i] <= lowThreshold) {
normalizedCounts[i] = -1;
distributed++;
total -= counts[i];
}
else if (counts[i] <= lowOne) {
normalizedCounts[i] = 1;
distributed++;
total -= counts[i];
}
else {
normalizedCounts[i] = UNASSIGNED;
}
}
int normalizationFactor = 1 << tableLog;
int toDistribute = normalizationFactor - distributed;
if ((total / toDistribute) > lowOne) {
/* risk of rounding to zero */
lowOne = ((total * 3) / (toDistribute * 2));
for (int i = 0; i <= maxSymbol; i++) {
if ((normalizedCounts[i] == UNASSIGNED) && (counts[i] <= lowOne)) {
normalizedCounts[i] = 1;
distributed++;
total -= counts[i];
}
}
toDistribute = normalizationFactor - distributed;
}
if (distributed == maxSymbol + 1) {
// all values are pretty poor;
// probably incompressible data (should have already been detected);
// find max, then give all remaining points to max
int maxValue = 0;
int maxCount = 0;
for (int i = 0; i <= maxSymbol; i++) {
if (counts[i] > maxCount) {
maxValue = i;
maxCount = counts[i];
}
}
normalizedCounts[maxValue] += (short) toDistribute;
return 0;
}
if (total == 0) {
// all of the symbols were low enough for the lowOne or lowThreshold
for (int i = 0; toDistribute > 0; i = (i + 1) % (maxSymbol + 1)) {
if (normalizedCounts[i] > 0) {
toDistribute--;
normalizedCounts[i]++;
}
}
return 0;
}
// TODO: simplify/document this code
long vStepLog = 62 - tableLog;
long mid = (1L << (vStepLog - 1)) - 1;
long rStep = (((1L << vStepLog) * toDistribute) + mid) / total; /* scale on remaining */
long tmpTotal = mid;
for (int i = 0; i <= maxSymbol; i++) {
if (normalizedCounts[i] == UNASSIGNED) {
long end = tmpTotal + (counts[i] * rStep);
int sStart = (int) (tmpTotal >>> vStepLog);
int sEnd = (int) (end >>> vStepLog);
int weight = sEnd - sStart;
if (weight < 1) {
throw new AssertionError();
}
normalizedCounts[i] = (short) weight;
tmpTotal = end;
}
}
return 0;
}
public static int writeNormalizedCounts(Object outputBase, long outputAddress, int outputSize, short[] normalizedCounts, int maxSymbol, int tableLog)
{
checkArgument(tableLog <= MAX_TABLE_LOG, "FSE table too large");
checkArgument(tableLog >= MIN_TABLE_LOG, "FSE table too small");
long output = outputAddress;
long outputLimit = outputAddress + outputSize;
int tableSize = 1 << tableLog;
int bitCount = 0;
// encode table size
int bitStream = (tableLog - MIN_TABLE_LOG);
bitCount += 4;
int remaining = tableSize + 1; // +1 for extra accuracy
int threshold = tableSize;
int tableBitCount = tableLog + 1;
int symbol = 0;
boolean previousIs0 = false;
while (remaining > 1) {
if (previousIs0) {
// From RFC 8478, section 4.1.1:
// When a symbol has a probability of zero, it is followed by a 2-bit
// repeat flag. This repeat flag tells how many probabilities of zeroes
// follow the current one. It provides a number ranging from 0 to 3.
// If it is a 3, another 2-bit repeat flag follows, and so on.
int start = symbol;
// find run of symbols with count 0
while (normalizedCounts[symbol] == 0) {
symbol++;
}
// encode in batches if 8 repeat sequences in one shot (representing 24 symbols total)
while (symbol >= start + 24) {
start += 24;
bitStream |= (0b11_11_11_11_11_11_11_11 << bitCount);
checkArgument(output + SIZE_OF_SHORT <= outputLimit, "Output buffer too small");
UNSAFE.putShort(outputBase, output, (short) bitStream);
output += SIZE_OF_SHORT;
// flush now, so no need to increase bitCount by 16
bitStream >>>= Short.SIZE;
}
// encode remaining in batches of 3 symbols
while (symbol >= start + 3) {
start += 3;
bitStream |= 0b11 << bitCount;
bitCount += 2;
}
// encode tail
bitStream |= (symbol - start) << bitCount;
bitCount += 2;
// flush bitstream if necessary
if (bitCount > 16) {
checkArgument(output + SIZE_OF_SHORT <= outputLimit, "Output buffer too small");
UNSAFE.putShort(outputBase, output, (short) bitStream);
output += SIZE_OF_SHORT;
bitStream >>>= Short.SIZE;
bitCount -= Short.SIZE;
}
}
int count = normalizedCounts[symbol++];
int max = (2 * threshold - 1) - remaining;
remaining -= count < 0 ? -count : count;
count++; /* +1 for extra accuracy */
if (count >= threshold) {
count += max;
}
bitStream |= count << bitCount;
bitCount += tableBitCount;
bitCount -= (count < max ? 1 : 0);
previousIs0 = (count == 1);
if (remaining < 1) {
throw new AssertionError();
}
while (remaining < threshold) {
tableBitCount--;
threshold >>= 1;
}
// flush bitstream if necessary
if (bitCount > 16) {
checkArgument(output + SIZE_OF_SHORT <= outputLimit, "Output buffer too small");
UNSAFE.putShort(outputBase, output, (short) bitStream);
output += SIZE_OF_SHORT;
bitStream >>>= Short.SIZE;
bitCount -= Short.SIZE;
}
}
// flush remaining bitstream
checkArgument(output + SIZE_OF_SHORT <= outputLimit, "Output buffer too small");
UNSAFE.putShort(outputBase, output, (short) bitStream);
output += (bitCount + 7) / 8;
checkArgument(symbol <= maxSymbol + 1, "Error"); // TODO
return (int) (output - outputAddress);
}
public static final class Table
{
int log2Size;
final int[] newState;
final byte[] symbol;
final byte[] numberOfBits;
public Table(int log2Capacity)
{
int capacity = 1 << log2Capacity;
newState = new int[capacity];
symbol = new byte[capacity];
numberOfBits = new byte[capacity];
}
public Table(int log2Size, int[] newState, byte[] symbol, byte[] numberOfBits)
{
int size = 1 << log2Size;
if (newState.length != size || symbol.length != size || numberOfBits.length != size) {
throw new IllegalArgumentException("Expected arrays to match provided size");
}
this.log2Size = log2Size;
this.newState = newState;
this.symbol = symbol;
this.numberOfBits = numberOfBits;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy