org.apache.pulsar.broker.TimeAverageMessageData Maven / Gradle / Ivy
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.pulsar.broker;
import org.apache.pulsar.policies.data.loadbalancer.NamespaceBundleStats;
/**
* Data class comprising the average message data over a fixed period of time.
*/
public class TimeAverageMessageData {
// The maximum number of samples this data will consider.
private int maxSamples;
// The number of samples that are currently available for this data. Always
// at most maxSamples.
private int numSamples;
// The average throughput-in in bytes per second.
private double msgThroughputIn;
// The average throughput-out in bytes per second.
private double msgThroughputOut;
// The average message rate in per second.
private double msgRateIn;
// The average message rate out per second.
private double msgRateOut;
// For JSON only.
public TimeAverageMessageData() {
}
/**
* Initialize this TimeAverageData to 0 values.
*
* @param maxSamples
* The maximum number of samples with which to maintain the average.
*/
public TimeAverageMessageData(final int maxSamples) {
this.maxSamples = maxSamples;
}
/**
* Initialize this TimeAverageData using default stats.
*
* @param maxSamples
* The maximum number of samples with which to maintain the average.
* @param defaultStats
* The stats to default to. These are overwritten after the first update.
*/
public TimeAverageMessageData(final int maxSamples, final NamespaceBundleStats defaultStats) {
this.maxSamples = maxSamples;
msgThroughputIn = defaultStats.msgThroughputIn;
msgThroughputOut = defaultStats.msgThroughputOut;
msgRateIn = defaultStats.msgRateIn;
msgRateOut = defaultStats.msgRateOut;
}
/**
* Update using new samples for the message data.
*
* @param newMsgThroughputIn
* Most recently observed throughput in.
* @param newMsgThroughputOut
* Most recently observed throughput out.
* @param newMsgRateIn
* Most recently observed message rate in.
* @param newMsgRateOut
* Most recently observed message rate out.
*/
public void update(final double newMsgThroughputIn, final double newMsgThroughputOut, final double newMsgRateIn,
final double newMsgRateOut) {
// If max samples has been reached, don't increase numSamples.
numSamples = Math.min(numSamples + 1, maxSamples);
msgThroughputIn = getUpdatedValue(msgThroughputIn, newMsgThroughputIn);
msgThroughputOut = getUpdatedValue(msgThroughputOut, newMsgThroughputOut);
msgRateIn = getUpdatedValue(msgRateIn, newMsgRateIn);
msgRateOut = getUpdatedValue(msgRateOut, newMsgRateOut);
}
/**
* Update using a new bundle sample.
*
* @param newSample
* Most recently observed bundle stats.
*/
public void update(final NamespaceBundleStats newSample) {
update(newSample.msgThroughputIn, newSample.msgThroughputOut, newSample.msgRateIn, newSample.msgRateOut);
}
// Update the average of a sample using the number of samples, the previous
// average, and a new sample.
private double getUpdatedValue(final double oldAverage, final double newSample) {
// Note that for numSamples == 1, this returns newSample.
// This ensures that default stats get overwritten after the first
// update.
return ((numSamples - 1) * oldAverage + newSample) / numSamples;
}
public int getMaxSamples() {
return maxSamples;
}
public void setMaxSamples(int maxSamples) {
this.maxSamples = maxSamples;
}
public int getNumSamples() {
return numSamples;
}
public void setNumSamples(int numSamples) {
this.numSamples = numSamples;
}
public double getMsgThroughputIn() {
return msgThroughputIn;
}
public void setMsgThroughputIn(double msgThroughputIn) {
this.msgThroughputIn = msgThroughputIn;
}
public double getMsgThroughputOut() {
return msgThroughputOut;
}
public void setMsgThroughputOut(double msgThroughputOut) {
this.msgThroughputOut = msgThroughputOut;
}
public double getMsgRateIn() {
return msgRateIn;
}
public void setMsgRateIn(double msgRateIn) {
this.msgRateIn = msgRateIn;
}
public double getMsgRateOut() {
return msgRateOut;
}
public void setMsgRateOut(double msgRateOut) {
this.msgRateOut = msgRateOut;
}
/**
* Get the total message rate.
*
* @return Message rate in + message rate out.
*/
public double totalMsgRate() {
return msgRateIn + msgRateOut;
}
/**
* Get the total message throughput.
*
* @return Message throughput in + message throughput out.
*/
public double totalMsgThroughput() {
return msgThroughputIn + msgThroughputOut;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy