All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.pulsar.broker.loadbalance.impl.DeviationShedder Maven / Gradle / Ivy

There is a newer version: 4.0.0.10
Show newest version
/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package org.apache.pulsar.broker.loadbalance.impl;

import com.google.common.collect.ArrayListMultimap;
import com.google.common.collect.Multimap;
import java.util.Map;
import java.util.TreeSet;
import org.apache.commons.lang3.tuple.ImmutablePair;
import org.apache.commons.lang3.tuple.Pair;
import org.apache.pulsar.broker.BrokerData;
import org.apache.pulsar.broker.ServiceConfiguration;
import org.apache.pulsar.broker.loadbalance.LoadData;
import org.apache.pulsar.broker.loadbalance.LoadSheddingStrategy;

/**
 * An abstract class which makes a LoadSheddingStrategy which makes decisions based on standard deviation easier to
 * implement. Assuming there exists some real number metric which may estimate the load on a server, this load shedding
 * strategy calculates the standard deviation with respect to that metric and sheds load on brokers whose standard
 * deviation is above some threshold.
 */
public abstract class DeviationShedder implements LoadSheddingStrategy {
    // A Set of pairs is used in favor of a Multimap for simplicity.
    protected TreeSet> metricTreeSetCache;
    protected TreeSet> bundleTreeSetCache;

    /**
     * Initialize this DeviationShedder.
     */
    public DeviationShedder() {
        bundleTreeSetCache = new TreeSet<>();
        metricTreeSetCache = new TreeSet<>();
    }

    // Measure the load incurred by a bundle.
    protected abstract double bundleValue(String bundle, BrokerData brokerData, ServiceConfiguration conf);

    // Measure the load suffered by a broker.
    protected abstract double brokerValue(BrokerData brokerData, ServiceConfiguration conf);

    // Get the threshold above which the standard deviation of a broker is large
    // enough to warrant unloading bundles.
    protected abstract double getDeviationThreshold(ServiceConfiguration conf);

    /**
     * Recommend that all of the returned bundles be unloaded based on observing excessive standard deviations according
     * to some metric.
     *
     * @param loadData
     *            The load data to used to make the unloading decision.
     * @param conf
     *            The service configuration.
     * @return A map from all selected bundles to the brokers on which they reside.
     */
    @Override
    public Multimap findBundlesForUnloading(final LoadData loadData, final ServiceConfiguration conf) {
        final Multimap result = ArrayListMultimap.create();
        bundleTreeSetCache.clear();
        metricTreeSetCache.clear();
        double sum = 0;
        double squareSum = 0;
        final Map brokerDataMap = loadData.getBrokerData();

        // Treating each broker as a data point, calculate the sum and squared
        // sum of the evaluated broker metrics.
        // These may be used to calculate the standard deviation.
        for (Map.Entry entry : brokerDataMap.entrySet()) {
            final double value = brokerValue(entry.getValue(), conf);
            sum += value;
            squareSum += value * value;
            metricTreeSetCache.add(new ImmutablePair<>(value, entry.getKey()));
        }
        // Mean cannot change by just moving around bundles.
        final double mean = sum / brokerDataMap.size();
        double standardDeviation = Math.sqrt(squareSum / brokerDataMap.size() - mean * mean);
        final double deviationThreshold = getDeviationThreshold(conf);
        String lastMostOverloaded = null;
        // While the most loaded broker is above the standard deviation
        // threshold, continue to move bundles.
        while ((metricTreeSetCache.last().getKey() - mean) / standardDeviation > deviationThreshold) {
            final Pair mostLoadedPair = metricTreeSetCache.last();
            final double highestValue = mostLoadedPair.getKey();
            final String mostLoaded = mostLoadedPair.getValue();

            final Pair leastLoadedPair = metricTreeSetCache.first();
            final double leastValue = leastLoadedPair.getKey();
            final String leastLoaded = metricTreeSetCache.first().getValue();

            if (!mostLoaded.equals(lastMostOverloaded)) {
                // Reset the bundle tree set now that a different broker is
                // being considered.
                bundleTreeSetCache.clear();
                for (String bundle : brokerDataMap.get(mostLoaded).getLocalData().getBundles()) {
                    if (!result.containsKey(bundle)) {
                        // Don't consider bundles that are already going to be
                        // moved.
                        bundleTreeSetCache.add(
                                new ImmutablePair<>(bundleValue(bundle, brokerDataMap.get(mostLoaded), conf), bundle));
                    }
                }
                lastMostOverloaded = mostLoaded;
            }
            boolean selected = false;
            while (!(bundleTreeSetCache.isEmpty() || selected)) {
                Pair mostExpensivePair = bundleTreeSetCache.pollLast();
                double loadIncurred = mostExpensivePair.getKey();
                // When the bundle is moved, we want the now least loaded server
                // to have lower overall load than the
                // most loaded server does not. Thus, we will only consider
                // moving the bundle if this condition
                // holds, and otherwise we will try the next bundle.
                if (loadIncurred + leastValue < highestValue) {
                    // Update the standard deviation and replace the old load
                    // values in the broker tree set with the
                    // load values assuming this move took place.
                    final String bundleToMove = mostExpensivePair.getValue();
                    result.put(bundleToMove, mostLoaded);
                    metricTreeSetCache.remove(mostLoadedPair);
                    metricTreeSetCache.remove(leastLoadedPair);
                    final double newHighLoad = highestValue - loadIncurred;
                    final double newLowLoad = leastValue - loadIncurred;
                    squareSum -= highestValue * highestValue + leastValue * leastValue;
                    squareSum += newHighLoad * newHighLoad + newLowLoad * newLowLoad;
                    standardDeviation = Math.sqrt(squareSum / brokerDataMap.size() - mean * mean);
                    metricTreeSetCache.add(new ImmutablePair<>(newLowLoad, leastLoaded));
                    metricTreeSetCache.add(new ImmutablePair<>(newHighLoad, mostLoaded));
                    selected = true;
                }
            }
            if (!selected) {
                // Move on to the next broker if no bundle could be moved.
                metricTreeSetCache.pollLast();
            }
        }
        return result;
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy