All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.pulsar.common.util.collections.ConcurrentLongPairSet Maven / Gradle / Ivy

There is a newer version: 4.0.0.4
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package org.apache.pulsar.common.util.collections;

import static org.apache.pulsar.shade.com.google.common.base.Preconditions.checkArgument;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Objects;
import java.util.Set;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicIntegerFieldUpdater;
import java.util.concurrent.locks.StampedLock;

/**
 * Concurrent hash set where values are composed of pairs of longs.
 *
 * 

Provides similar methods as a {@code ConcurrentHashSet} but since it's an open hash set with linear probing, * no node allocations are required to store the keys and values, and no boxing is required. * *

Values MUST be >= 0. *
* WARN: method forEach do not guarantee thread safety, nor does the items method. *
* The forEach method is specifically designed for single-threaded usage. When iterating over a set * with concurrent writes, it becomes possible for new values to be either observed or not observed. * There is no guarantee that if we write value1 and value2, and are able to see value2, then we will also see value1. * *
* It is crucial to understand that the results obtained from aggregate status methods such as items * are typically reliable only when the map is not undergoing concurrent updates from other threads. * When concurrent updates are involved, the results of these methods reflect transient states * that may be suitable for monitoring or estimation purposes, but not for program control. */ public class ConcurrentLongPairSet implements LongPairSet { private static final long EmptyItem = -1L; private static final long DeletedItem = -2L; private static final float SetFillFactor = 0.66f; private static final int DefaultExpectedItems = 256; private static final int DefaultConcurrencyLevel = 16; private static final float DefaultMapFillFactor = 0.66f; private static final float DefaultMapIdleFactor = 0.15f; private static final float DefaultExpandFactor = 2; private static final float DefaultShrinkFactor = 2; private static final boolean DefaultAutoShrink = false; private final Section[] sections; public static Builder newBuilder() { return new Builder(); } /** * Builder of ConcurrentLongPairSet. */ public static class Builder { int expectedItems = DefaultExpectedItems; int concurrencyLevel = DefaultConcurrencyLevel; float mapFillFactor = DefaultMapFillFactor; float mapIdleFactor = DefaultMapIdleFactor; float expandFactor = DefaultExpandFactor; float shrinkFactor = DefaultShrinkFactor; boolean autoShrink = DefaultAutoShrink; public Builder expectedItems(int expectedItems) { this.expectedItems = expectedItems; return this; } public Builder concurrencyLevel(int concurrencyLevel) { this.concurrencyLevel = concurrencyLevel; return this; } public Builder mapFillFactor(float mapFillFactor) { this.mapFillFactor = mapFillFactor; return this; } public Builder mapIdleFactor(float mapIdleFactor) { this.mapIdleFactor = mapIdleFactor; return this; } public Builder expandFactor(float expandFactor) { this.expandFactor = expandFactor; return this; } public Builder shrinkFactor(float shrinkFactor) { this.shrinkFactor = shrinkFactor; return this; } public Builder autoShrink(boolean autoShrink) { this.autoShrink = autoShrink; return this; } public ConcurrentLongPairSet build() { return new ConcurrentLongPairSet(expectedItems, concurrencyLevel, mapFillFactor, mapIdleFactor, autoShrink, expandFactor, shrinkFactor); } } /** * Represents a function that accepts an object of the {@code LongPair} type. */ public interface ConsumerLong { void accept(LongPair item); } /** * Represents a function that accepts two long arguments. */ public interface LongPairConsumer { void accept(long v1, long v2); } @Deprecated public ConcurrentLongPairSet() { this(DefaultExpectedItems); } @Deprecated public ConcurrentLongPairSet(int expectedItems) { this(expectedItems, DefaultConcurrencyLevel); } @Deprecated public ConcurrentLongPairSet(int expectedItems, int concurrencyLevel) { this(expectedItems, concurrencyLevel, DefaultMapFillFactor, DefaultMapIdleFactor, DefaultAutoShrink, DefaultExpandFactor, DefaultShrinkFactor); } public ConcurrentLongPairSet(int expectedItems, int concurrencyLevel, float mapFillFactor, float mapIdleFactor, boolean autoShrink, float expandFactor, float shrinkFactor) { checkArgument(expectedItems > 0); checkArgument(concurrencyLevel > 0); checkArgument(expectedItems >= concurrencyLevel); checkArgument(mapFillFactor > 0 && mapFillFactor < 1); checkArgument(mapIdleFactor > 0 && mapIdleFactor < 1); checkArgument(mapFillFactor > mapIdleFactor); checkArgument(expandFactor > 1); checkArgument(shrinkFactor > 1); int numSections = concurrencyLevel; int perSectionExpectedItems = expectedItems / numSections; int perSectionCapacity = (int) (perSectionExpectedItems / SetFillFactor); this.sections = new Section[numSections]; for (int i = 0; i < numSections; i++) { sections[i] = new Section(perSectionCapacity, mapFillFactor, mapIdleFactor, autoShrink, expandFactor, shrinkFactor); } } @Override public long size() { long size = 0; for (int i = 0; i < sections.length; i++) { size += sections[i].size; } return size; } @Override public long capacity() { long capacity = 0; for (int i = 0; i < sections.length; i++) { capacity += sections[i].capacity; } return capacity; } public boolean isEmpty() { for (int i = 0; i < sections.length; i++) { if (sections[i].size != 0) { return false; } } return true; } long getUsedBucketCount() { long usedBucketCount = 0; for (int i = 0; i < sections.length; i++) { usedBucketCount += sections[i].usedBuckets; } return usedBucketCount; } public boolean contains(long item1, long item2) { checkBiggerEqualZero(item1); long h = hash(item1, item2); return getSection(h).contains(item1, item2, (int) h); } public boolean add(long item1, long item2) { checkBiggerEqualZero(item1); long h = hash(item1, item2); return getSection(h).add(item1, item2, (int) h); } /** * Remove an existing entry if found. * * @param item1 * @return true if removed or false if item was not present */ public boolean remove(long item1, long item2) { checkBiggerEqualZero(item1); long h = hash(item1, item2); return getSection(h).remove(item1, item2, (int) h); } private Section getSection(long hash) { // Use 32 msb out of long to get the section final int sectionIdx = (int) (hash >>> 32) & (sections.length - 1); return sections[sectionIdx]; } public void clear() { for (Section s : sections) { s.clear(); } } /** * Iterate over all the elements in the set and apply the provided function. *

* Warning: Do Not Guarantee Thread-Safety. * @param processor the processor to process the elements */ public void forEach(LongPairConsumer processor) { for (int i = 0; i < sections.length; i++) { sections[i].forEach(processor); } } /** * Removes all of the elements of this collection that satisfy the given predicate. * * @param filter * a predicate which returns {@code true} for elements to be removed * * @return number of removed values */ public int removeIf(LongPairPredicate filter) { int removedValues = 0; for (int i = 0; i < sections.length; i++) { removedValues += sections[i].removeIf(filter); } return removedValues; } /** * @return a new set of all keys (makes a copy) */ public Set items() { Set items = new HashSet<>(); forEach((item1, item2) -> items.add(new LongPair(item1, item2))); return items; } /** * @return a new list of keys with max provided numberOfItems (makes a copy) */ public Set items(int numberOfItems) { return items(numberOfItems, (item1, item2) -> new LongPair(item1, item2)); } @Override public Set items(int numberOfItems, LongPairFunction longPairConverter) { Set items = new HashSet<>(); for (int i = 0; i < sections.length; i++) { sections[i].forEach((item1, item2) -> { if (items.size() < numberOfItems) { items.add(longPairConverter.apply(item1, item2)); } }); if (items.size() >= numberOfItems) { return items; } } return items; } // A section is a portion of the hash map that is covered by a single @SuppressWarnings("serial") private static final class Section extends StampedLock { // Each item take up 2 continuous array space. private static final int ITEM_SIZE = 2; // Keys and values are stored interleaved in the table array private volatile long[] table; private volatile int capacity; private final int initCapacity; private static final AtomicIntegerFieldUpdater

SIZE_UPDATER = AtomicIntegerFieldUpdater .newUpdater(Section.class, "size"); private volatile int size; private int usedBuckets; private int resizeThresholdUp; private int resizeThresholdBelow; private final float mapFillFactor; private final float mapIdleFactor; private final float expandFactor; private final float shrinkFactor; private final boolean autoShrink; Section(int capacity, float mapFillFactor, float mapIdleFactor, boolean autoShrink, float expandFactor, float shrinkFactor) { this.capacity = alignToPowerOfTwo(capacity); this.initCapacity = this.capacity; this.table = new long[ITEM_SIZE * this.capacity]; this.size = 0; this.usedBuckets = 0; this.autoShrink = autoShrink; this.mapFillFactor = mapFillFactor; this.mapIdleFactor = mapIdleFactor; this.expandFactor = expandFactor; this.shrinkFactor = shrinkFactor; this.resizeThresholdUp = (int) (this.capacity * mapFillFactor); this.resizeThresholdBelow = (int) (this.capacity * mapIdleFactor); Arrays.fill(table, EmptyItem); } boolean contains(long item1, long item2, int hash) { long stamp = tryOptimisticRead(); boolean acquiredLock = false; // add local variable here, so OutOfBound won't happen long[] table = this.table; // calculate table.length / 2 as capacity to avoid rehash changing capacity int bucket = signSafeMod(hash, table.length / ITEM_SIZE); try { while (true) { // First try optimistic locking long storedItem1 = table[bucket]; long storedItem2 = table[bucket + 1]; if (!acquiredLock && validate(stamp)) { // The values we have read are consistent if (item1 == storedItem1 && item2 == storedItem2) { return true; } else if (storedItem1 == EmptyItem) { // Not found return false; } } else { // Fallback to acquiring read lock if (!acquiredLock) { stamp = readLock(); acquiredLock = true; // update local variable table = this.table; bucket = signSafeMod(hash, table.length / ITEM_SIZE); storedItem1 = table[bucket]; storedItem2 = table[bucket + 1]; } if (item1 == storedItem1 && item2 == storedItem2) { return true; } else if (storedItem1 == EmptyItem) { // Not found return false; } } bucket = (bucket + ITEM_SIZE) & (table.length - 1); } } finally { if (acquiredLock) { unlockRead(stamp); } } } boolean add(long item1, long item2, long hash) { long stamp = writeLock(); int bucket = signSafeMod(hash, capacity); // Remember where we find the first available spot int firstDeletedItem = -1; try { while (true) { long storedItem1 = table[bucket]; long storedItem2 = table[bucket + 1]; if (item1 == storedItem1 && item2 == storedItem2) { // Item was already in set return false; } else if (storedItem1 == EmptyItem) { // Found an empty bucket. This means the key is not in the set. If we've already seen a deleted // key, we should write at that position if (firstDeletedItem != -1) { bucket = firstDeletedItem; } else { ++usedBuckets; } table[bucket] = item1; table[bucket + 1] = item2; SIZE_UPDATER.incrementAndGet(this); return true; } else if (storedItem1 == DeletedItem) { // The bucket contained a different deleted key if (firstDeletedItem == -1) { firstDeletedItem = bucket; } } bucket = (bucket + ITEM_SIZE) & (table.length - 1); } } finally { if (usedBuckets > resizeThresholdUp) { try { // Expand the hashmap int newCapacity = alignToPowerOfTwo((int) (capacity * expandFactor)); rehash(newCapacity); } finally { unlockWrite(stamp); } } else { unlockWrite(stamp); } } } private boolean remove(long item1, long item2, int hash) { long stamp = writeLock(); int bucket = signSafeMod(hash, capacity); try { while (true) { long storedItem1 = table[bucket]; long storedItem2 = table[bucket + 1]; if (item1 == storedItem1 && item2 == storedItem2) { SIZE_UPDATER.decrementAndGet(this); cleanBucket(bucket); return true; } else if (storedItem1 == EmptyItem) { return false; } bucket = (bucket + ITEM_SIZE) & (table.length - 1); } } finally { tryShrinkThenUnlock(stamp); } } private int removeIf(LongPairPredicate filter) { Objects.requireNonNull(filter); int removedItems = 0; // Go through all the buckets for this section long stamp = writeLock(); try { for (int bucket = 0; bucket < table.length; bucket += ITEM_SIZE) { long storedItem1 = table[bucket]; long storedItem2 = table[bucket + 1]; if (storedItem1 != DeletedItem && storedItem1 != EmptyItem) { if (filter.test(storedItem1, storedItem2)) { SIZE_UPDATER.decrementAndGet(this); cleanBucket(bucket); removedItems++; } } } } finally { tryShrinkThenUnlock(stamp); } return removedItems; } private void tryShrinkThenUnlock(long stamp) { if (autoShrink && size < resizeThresholdBelow) { try { // Shrinking must at least ensure initCapacity, // so as to avoid frequent shrinking and expansion near initCapacity, // frequent shrinking and expansion, // additionally opened arrays will consume more memory and affect GC int newCapacity = Math.max(alignToPowerOfTwo((int) (capacity / shrinkFactor)), initCapacity); int newResizeThresholdUp = (int) (newCapacity * mapFillFactor); if (newCapacity < capacity && newResizeThresholdUp > size) { // shrink the hashmap rehash(newCapacity); } } finally { unlockWrite(stamp); } } else { unlockWrite(stamp); } } private void cleanBucket(int bucket) { int nextInArray = (bucket + ITEM_SIZE) & (table.length - 1); if (table[nextInArray] == EmptyItem) { table[bucket] = EmptyItem; table[bucket + 1] = EmptyItem; --usedBuckets; // Cleanup all the buckets that were in `DeletedItem` state, // so that we can reduce unnecessary expansions int lastBucket = (bucket - ITEM_SIZE) & (table.length - 1); while (table[lastBucket] == DeletedItem) { table[lastBucket] = EmptyItem; table[lastBucket + 1] = EmptyItem; --usedBuckets; lastBucket = (lastBucket - ITEM_SIZE) & (table.length - 1); } } else { table[bucket] = DeletedItem; table[bucket + 1] = DeletedItem; } } void clear() { long stamp = writeLock(); try { if (autoShrink && capacity > initCapacity) { shrinkToInitCapacity(); } else { Arrays.fill(table, EmptyItem); this.size = 0; this.usedBuckets = 0; } } finally { unlockWrite(stamp); } } public void forEach(LongPairConsumer processor) { long[] table = this.table; // Go through all the buckets for this section. We try to renew the stamp only after a validation // error, otherwise we keep going with the same. long stamp = 0; for (int bucket = 0; bucket < table.length; bucket += ITEM_SIZE) { if (stamp == 0) { stamp = tryOptimisticRead(); } long storedItem1 = table[bucket]; long storedItem2 = table[bucket + 1]; if (!validate(stamp)) { // Fallback to acquiring read lock stamp = readLock(); try { storedItem1 = table[bucket]; storedItem2 = table[bucket + 1]; } finally { unlockRead(stamp); } stamp = 0; } if (storedItem1 != DeletedItem && storedItem1 != EmptyItem) { processor.accept(storedItem1, storedItem2); } } } private void rehash(int newCapacity) { // Expand the hashmap long[] newTable = new long[ITEM_SIZE * newCapacity]; Arrays.fill(newTable, EmptyItem); // Re-hash table for (int i = 0; i < table.length; i += ITEM_SIZE) { long storedItem1 = table[i]; long storedItem2 = table[i + 1]; if (storedItem1 != EmptyItem && storedItem1 != DeletedItem) { insertKeyValueNoLock(newTable, newCapacity, storedItem1, storedItem2); } } table = newTable; usedBuckets = size; // Capacity needs to be updated after the values, so that we won't see // a capacity value bigger than the actual array size capacity = newCapacity; resizeThresholdUp = (int) (capacity * mapFillFactor); resizeThresholdBelow = (int) (capacity * mapIdleFactor); } private void shrinkToInitCapacity() { // Expand the hashmap long[] newTable = new long[ITEM_SIZE * initCapacity]; Arrays.fill(newTable, EmptyItem); table = newTable; size = 0; usedBuckets = 0; // Capacity needs to be updated after the values, so that we won't see // a capacity value bigger than the actual array size capacity = initCapacity; resizeThresholdUp = (int) (capacity * mapFillFactor); resizeThresholdBelow = (int) (capacity * mapIdleFactor); } private static void insertKeyValueNoLock(long[] table, int capacity, long item1, long item2) { int bucket = signSafeMod(hash(item1, item2), capacity); while (true) { long storedKey = table[bucket]; if (storedKey == EmptyItem) { // The bucket is empty, so we can use it table[bucket] = item1; table[bucket + 1] = item2; return; } bucket = (bucket + ITEM_SIZE) & (table.length - 1); } } } private static final long HashMixer = 0xc6a4a7935bd1e995L; private static final int R = 47; static final long hash(long key1, long key2) { long hash = key1 * HashMixer; hash ^= hash >>> R; hash *= HashMixer; hash += 31 + (key2 * HashMixer); hash ^= hash >>> R; hash *= HashMixer; return hash; } static final int signSafeMod(long n, int max) { // as the ITEM_SIZE of Section is 2, so the index is the multiple of 2 // that is to left shift 1 bit return (int) (n & (max - 1)) << 1; } private static int alignToPowerOfTwo(int n) { return (int) Math.pow(2, 32 - Integer.numberOfLeadingZeros(n - 1)); } private static void checkBiggerEqualZero(long n) { if (n < 0L) { throw new IllegalArgumentException("Keys and values must be >= 0"); } } /** * Class representing two long values. */ public static class LongPair implements Comparable { public final long first; public final long second; public LongPair(long first, long second) { this.first = first; this.second = second; } @Override public boolean equals(Object obj) { if (obj instanceof LongPair) { LongPair other = (LongPair) obj; return first == other.first && second == other.second; } return false; } @Override public int hashCode() { return (int) hash(first, second); } @Override public int compareTo(LongPair o) { if (first != o.first) { return Long.compare(first, o.first); } else { return Long.compare(second, o.second); } } } @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append('{'); final AtomicBoolean first = new AtomicBoolean(true); forEach((item1, item2) -> { if (!first.getAndSet(false)) { sb.append(", "); } sb.append('['); sb.append(item1); sb.append(':'); sb.append(item2); sb.append(']'); }); sb.append('}'); return sb.toString(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy