All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.protobuf.CodedOutputStream Maven / Gradle / Ivy

The newest version!
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd

package com.google.protobuf;

import static com.google.protobuf.WireFormat.FIXED32_SIZE;
import static com.google.protobuf.WireFormat.FIXED64_SIZE;
import static com.google.protobuf.WireFormat.MAX_VARINT32_SIZE;
import static com.google.protobuf.WireFormat.MAX_VARINT_SIZE;
import static java.lang.Math.max;

import com.google.protobuf.Utf8.UnpairedSurrogateException;
import java.io.IOException;
import java.io.OutputStream;
import java.nio.BufferOverflowException;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.util.logging.Level;
import java.util.logging.Logger;

/**
 * Encodes and writes protocol message fields.
 *
 * 

This class contains two kinds of methods: methods that write specific protocol message * constructs and field types (e.g. {@link #writeTag} and {@link #writeInt32}) and methods that * write low-level values (e.g. {@link #writeRawVarint32} and {@link #writeRawBytes}). If you are * writing encoded protocol messages, you should use the former methods, but if you are writing some * other format of your own design, use the latter. * *

This class is totally unsynchronized. */ public abstract class CodedOutputStream extends ByteOutput { private static final Logger logger = Logger.getLogger(CodedOutputStream.class.getName()); private static final boolean HAS_UNSAFE_ARRAY_OPERATIONS = UnsafeUtil.hasUnsafeArrayOperations(); /** Used to adapt to the experimental {@link Writer} interface. */ CodedOutputStreamWriter wrapper; /** * @deprecated Use {@link #computeFixed32SizeNoTag(int)} instead. */ @Deprecated public static final int LITTLE_ENDIAN_32_SIZE = FIXED32_SIZE; /** The buffer size used in {@link #newInstance(OutputStream)}. */ public static final int DEFAULT_BUFFER_SIZE = 4096; /** * Returns the buffer size to efficiently write dataLength bytes to this CodedOutputStream. Used * by AbstractMessageLite. * * @return the buffer size to efficiently write dataLength bytes to this CodedOutputStream. */ static int computePreferredBufferSize(int dataLength) { if (dataLength > DEFAULT_BUFFER_SIZE) { return DEFAULT_BUFFER_SIZE; } return dataLength; } /** * Create a new {@code CodedOutputStream} wrapping the given {@code OutputStream}. * *

NOTE: The provided {@link OutputStream} MUST NOT retain access or modify * the provided byte arrays. Doing so may result in corrupted data, which would be difficult to * debug. */ public static CodedOutputStream newInstance(final OutputStream output) { return newInstance(output, DEFAULT_BUFFER_SIZE); } /** * Create a new {@code CodedOutputStream} wrapping the given {@code OutputStream} with a given * buffer size. * *

NOTE: The provided {@link OutputStream} MUST NOT retain access or modify * the provided byte arrays. Doing so may result in corrupted data, which would be difficult to * debug. */ public static CodedOutputStream newInstance(final OutputStream output, final int bufferSize) { return new OutputStreamEncoder(output, bufferSize); } /** * Create a new {@code CodedOutputStream} that writes directly to the given byte array. If more * bytes are written than fit in the array, {@link OutOfSpaceException} will be thrown. Writing * directly to a flat array is faster than writing to an {@code OutputStream}. See also {@link * ByteString#newCodedBuilder}. */ public static CodedOutputStream newInstance(final byte[] flatArray) { return newInstance(flatArray, 0, flatArray.length); } /** * Create a new {@code CodedOutputStream} that writes directly to the given byte array slice. If * more bytes are written than fit in the slice, {@link OutOfSpaceException} will be thrown. * Writing directly to a flat array is faster than writing to an {@code OutputStream}. See also * {@link ByteString#newCodedBuilder}. */ public static CodedOutputStream newInstance( final byte[] flatArray, final int offset, final int length) { return new ArrayEncoder(flatArray, offset, length); } /** Create a new {@code CodedOutputStream} that writes to the given {@link ByteBuffer}. */ public static CodedOutputStream newInstance(ByteBuffer buffer) { if (buffer.hasArray()) { return new HeapNioEncoder(buffer); } if (buffer.isDirect() && !buffer.isReadOnly()) { return UnsafeDirectNioEncoder.isSupported() ? newUnsafeInstance(buffer) : newSafeInstance(buffer); } throw new IllegalArgumentException("ByteBuffer is read-only"); } /** For testing purposes only. */ static CodedOutputStream newUnsafeInstance(ByteBuffer buffer) { return new UnsafeDirectNioEncoder(buffer); } /** For testing purposes only. */ static CodedOutputStream newSafeInstance(ByteBuffer buffer) { return new SafeDirectNioEncoder(buffer); } /** * Configures serialization to be deterministic. * *

The deterministic serialization guarantees that for a given binary, equal (defined by the * {@code equals()} methods in protos) messages will always be serialized to the same bytes. This * implies: * *

    *
  • repeated serialization of a message will return the same bytes *
  • different processes of the same binary (which may be executing on different machines) * will serialize equal messages to the same bytes. *
* *

Note the deterministic serialization is NOT canonical across languages; it is also unstable * across different builds with schema changes due to unknown fields. Users who need canonical * serialization, e.g. persistent storage in a canonical form, fingerprinting, etc, should define * their own canonicalization specification and implement the serializer using reflection APIs * rather than relying on this API. * *

Once set, the serializer will: (Note this is an implementation detail and may subject to * change in the future) * *

    *
  • sort map entries by keys in lexicographical order or numerical order. Note: For string * keys, the order is based on comparing the Unicode value of each character in the strings. * The order may be different from the deterministic serialization in other languages where * maps are sorted on the lexicographical order of the UTF8 encoded keys. *
*/ public void useDeterministicSerialization() { serializationDeterministic = true; } boolean isSerializationDeterministic() { return serializationDeterministic; } private boolean serializationDeterministic; /** * Create a new {@code CodedOutputStream} that writes to the given {@link ByteBuffer}. * * @deprecated the size parameter is no longer used since use of an internal buffer is useless * (and wasteful) when writing to a {@link ByteBuffer}. Use {@link #newInstance(ByteBuffer)} * instead. */ @Deprecated public static CodedOutputStream newInstance( ByteBuffer byteBuffer, @SuppressWarnings("unused") int unused) { return newInstance(byteBuffer); } /** * Create a new {@code CodedOutputStream} that writes to the provided {@link ByteOutput}. * *

NOTE: The {@link ByteOutput} MUST NOT modify the provided buffers. Doing so * may result in corrupted data, which would be difficult to debug. * * @param byteOutput the output target for encoded bytes. * @param bufferSize the size of the internal scratch buffer to be used for string encoding. * Setting this to {@code 0} will disable buffering, requiring an allocation for each encoded * string. */ static CodedOutputStream newInstance(ByteOutput byteOutput, int bufferSize) { if (bufferSize < 0) { throw new IllegalArgumentException("bufferSize must be positive"); } return new ByteOutputEncoder(byteOutput, bufferSize); } // Disallow construction outside of this class. private CodedOutputStream() {} // ----------------------------------------------------------------- /** Encode and write a tag. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeTag(int fieldNumber, int wireType) throws IOException; /** Write an {@code int32} field, including tag, to the stream. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeInt32(int fieldNumber, int value) throws IOException; /** Write a {@code uint32} field, including tag, to the stream. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeUInt32(int fieldNumber, int value) throws IOException; /** Write a {@code sint32} field, including tag, to the stream. */ public final void writeSInt32(final int fieldNumber, final int value) throws IOException { writeUInt32(fieldNumber, encodeZigZag32(value)); } /** Write a {@code fixed32} field, including tag, to the stream. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeFixed32(int fieldNumber, int value) throws IOException; /** Write an {@code sfixed32} field, including tag, to the stream. */ public final void writeSFixed32(final int fieldNumber, final int value) throws IOException { writeFixed32(fieldNumber, value); } /** Write an {@code int64} field, including tag, to the stream. */ public final void writeInt64(final int fieldNumber, final long value) throws IOException { writeUInt64(fieldNumber, value); } /** Write a {@code uint64} field, including tag, to the stream. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeUInt64(int fieldNumber, long value) throws IOException; /** Write an {@code sint64} field, including tag, to the stream. */ public final void writeSInt64(final int fieldNumber, final long value) throws IOException { writeUInt64(fieldNumber, encodeZigZag64(value)); } /** Write a {@code fixed64} field, including tag, to the stream. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeFixed64(int fieldNumber, long value) throws IOException; /** Write an {@code sfixed64} field, including tag, to the stream. */ public final void writeSFixed64(final int fieldNumber, final long value) throws IOException { writeFixed64(fieldNumber, value); } /** Write a {@code float} field, including tag, to the stream. */ public final void writeFloat(final int fieldNumber, final float value) throws IOException { writeFixed32(fieldNumber, Float.floatToRawIntBits(value)); } /** Write a {@code double} field, including tag, to the stream. */ public final void writeDouble(final int fieldNumber, final double value) throws IOException { writeFixed64(fieldNumber, Double.doubleToRawLongBits(value)); } /** Write a {@code bool} field, including tag, to the stream. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeBool(int fieldNumber, boolean value) throws IOException; /** * Write an enum field, including tag, to the stream. The provided value is the numeric value used * to represent the enum value on the wire (not the enum ordinal value). */ public final void writeEnum(final int fieldNumber, final int value) throws IOException { writeInt32(fieldNumber, value); } /** Write a {@code string} field, including tag, to the stream. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeString(int fieldNumber, String value) throws IOException; /** Write a {@code bytes} field, including tag, to the stream. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeBytes(int fieldNumber, ByteString value) throws IOException; /** Write a {@code bytes} field, including tag, to the stream. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeByteArray(int fieldNumber, byte[] value) throws IOException; /** Write a {@code bytes} field, including tag, to the stream. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeByteArray(int fieldNumber, byte[] value, int offset, int length) throws IOException; /** * Write a {@code bytes} field, including tag, to the stream. This method will write all content * of the ByteBuffer regardless of the current position and limit (i.e., the number of bytes to be * written is value.capacity(), not value.remaining()). Furthermore, this method doesn't alter the * state of the passed-in ByteBuffer. Its position, limit, mark, etc. will remain unchanged. If * you only want to write the remaining bytes of a ByteBuffer, you can call {@code * writeByteBuffer(fieldNumber, byteBuffer.slice())}. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeByteBuffer(int fieldNumber, ByteBuffer value) throws IOException; /** Write a single byte. */ public final void writeRawByte(final byte value) throws IOException { write(value); } /** Write a single byte, represented by an integer value. */ public final void writeRawByte(final int value) throws IOException { write((byte) value); } /** Write an array of bytes. */ public final void writeRawBytes(final byte[] value) throws IOException { write(value, 0, value.length); } /** Write part of an array of bytes. */ public final void writeRawBytes(final byte[] value, int offset, int length) throws IOException { write(value, offset, length); } /** Write a byte string. */ public final void writeRawBytes(final ByteString value) throws IOException { value.writeTo(this); } /** * Write a ByteBuffer. This method will write all content of the ByteBuffer regardless of the * current position and limit (i.e., the number of bytes to be written is value.capacity(), not * value.remaining()). Furthermore, this method doesn't alter the state of the passed-in * ByteBuffer. Its position, limit, mark, etc. will remain unchanged. If you only want to write * the remaining bytes of a ByteBuffer, you can call {@code writeRawBytes(byteBuffer.slice())}. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeRawBytes(final ByteBuffer value) throws IOException; /** Write an embedded message field, including tag, to the stream. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeMessage(final int fieldNumber, final MessageLite value) throws IOException; /** Write an embedded message field, including tag, to the stream. */ // Abstract to avoid overhead of additional virtual method calls. abstract void writeMessage(final int fieldNumber, final MessageLite value, Schema schema) throws IOException; /** * Write a MessageSet extension field to the stream. For historical reasons, the wire format * differs from normal fields. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeMessageSetExtension(final int fieldNumber, final MessageLite value) throws IOException; /** * Write an unparsed MessageSet extension field to the stream. For historical reasons, the wire * format differs from normal fields. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeRawMessageSetExtension(final int fieldNumber, final ByteString value) throws IOException; // ----------------------------------------------------------------- /** Write an {@code int32} field to the stream. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeInt32NoTag(final int value) throws IOException; /** Write a {@code uint32} field to the stream. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeUInt32NoTag(int value) throws IOException; /** Write a {@code sint32} field to the stream. */ public final void writeSInt32NoTag(final int value) throws IOException { writeUInt32NoTag(encodeZigZag32(value)); } /** Write a {@code fixed32} field to the stream. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeFixed32NoTag(int value) throws IOException; /** Write a {@code sfixed32} field to the stream. */ public final void writeSFixed32NoTag(final int value) throws IOException { writeFixed32NoTag(value); } /** Write an {@code int64} field to the stream. */ public final void writeInt64NoTag(final long value) throws IOException { writeUInt64NoTag(value); } /** Write a {@code uint64} field to the stream. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeUInt64NoTag(long value) throws IOException; /** Write a {@code sint64} field to the stream. */ public final void writeSInt64NoTag(final long value) throws IOException { writeUInt64NoTag(encodeZigZag64(value)); } /** Write a {@code fixed64} field to the stream. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeFixed64NoTag(long value) throws IOException; /** Write a {@code sfixed64} field to the stream. */ public final void writeSFixed64NoTag(final long value) throws IOException { writeFixed64NoTag(value); } /** Write a {@code float} field to the stream. */ public final void writeFloatNoTag(final float value) throws IOException { writeFixed32NoTag(Float.floatToRawIntBits(value)); } /** Write a {@code double} field to the stream. */ public final void writeDoubleNoTag(final double value) throws IOException { writeFixed64NoTag(Double.doubleToRawLongBits(value)); } /** Write a {@code bool} field to the stream. */ public final void writeBoolNoTag(final boolean value) throws IOException { write((byte) (value ? 1 : 0)); } /** * Write an enum field to the stream. The provided value is the numeric value used to represent * the enum value on the wire (not the enum ordinal value). */ public final void writeEnumNoTag(final int value) throws IOException { writeInt32NoTag(value); } /** Write a {@code string} field to the stream. */ // TODO: Document behavior on ill-formed UTF-16 input. // Abstract to avoid overhead of additional virtual method calls. public abstract void writeStringNoTag(String value) throws IOException; /** Write a {@code bytes} field to the stream. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeBytesNoTag(final ByteString value) throws IOException; /** Write a {@code bytes} field to the stream. */ public final void writeByteArrayNoTag(final byte[] value) throws IOException { writeByteArrayNoTag(value, 0, value.length); } /** Write an embedded message field to the stream. */ // Abstract to avoid overhead of additional virtual method calls. public abstract void writeMessageNoTag(final MessageLite value) throws IOException; /** Write an embedded message field to the stream. */ // Abstract to avoid overhead of additional virtual method calls. abstract void writeMessageNoTag(final MessageLite value, Schema schema) throws IOException; // ================================================================= @ExperimentalApi @Override public abstract void write(byte value) throws IOException; @ExperimentalApi @Override public abstract void write(byte[] value, int offset, int length) throws IOException; @ExperimentalApi @Override public abstract void writeLazy(byte[] value, int offset, int length) throws IOException; @Override public abstract void write(ByteBuffer value) throws IOException; @ExperimentalApi @Override public abstract void writeLazy(ByteBuffer value) throws IOException; // ================================================================= // ================================================================= /** * Compute the number of bytes that would be needed to encode an {@code int32} field, including * tag. */ public static int computeInt32Size(final int fieldNumber, final int value) { return computeTagSize(fieldNumber) + computeInt32SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a {@code uint32} field, including * tag. */ public static int computeUInt32Size(final int fieldNumber, final int value) { return computeTagSize(fieldNumber) + computeUInt32SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an {@code sint32} field, including * tag. */ public static int computeSInt32Size(final int fieldNumber, final int value) { return computeTagSize(fieldNumber) + computeSInt32SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a {@code fixed32} field, including * tag. */ public static int computeFixed32Size(final int fieldNumber, final int value) { return computeTagSize(fieldNumber) + computeFixed32SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an {@code sfixed32} field, including * tag. */ public static int computeSFixed32Size(final int fieldNumber, final int value) { return computeTagSize(fieldNumber) + computeSFixed32SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an {@code int64} field, including * tag. */ public static int computeInt64Size(final int fieldNumber, final long value) { return computeTagSize(fieldNumber) + computeInt64SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a {@code uint64} field, including * tag. */ public static int computeUInt64Size(final int fieldNumber, final long value) { return computeTagSize(fieldNumber) + computeUInt64SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an {@code sint64} field, including * tag. */ public static int computeSInt64Size(final int fieldNumber, final long value) { return computeTagSize(fieldNumber) + computeSInt64SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a {@code fixed64} field, including * tag. */ public static int computeFixed64Size(final int fieldNumber, final long value) { return computeTagSize(fieldNumber) + computeFixed64SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an {@code sfixed64} field, including * tag. */ public static int computeSFixed64Size(final int fieldNumber, final long value) { return computeTagSize(fieldNumber) + computeSFixed64SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a {@code float} field, including * tag. */ public static int computeFloatSize(final int fieldNumber, final float value) { return computeTagSize(fieldNumber) + computeFloatSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a {@code double} field, including * tag. */ public static int computeDoubleSize(final int fieldNumber, final double value) { return computeTagSize(fieldNumber) + computeDoubleSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a {@code bool} field, including tag. */ public static int computeBoolSize(final int fieldNumber, final boolean value) { return computeTagSize(fieldNumber) + computeBoolSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an enum field, including tag. The * provided value is the numeric value used to represent the enum value on the wire (not the enum * ordinal value). */ public static int computeEnumSize(final int fieldNumber, final int value) { return computeTagSize(fieldNumber) + computeEnumSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a {@code string} field, including * tag. */ public static int computeStringSize(final int fieldNumber, final String value) { return computeTagSize(fieldNumber) + computeStringSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a {@code bytes} field, including * tag. */ public static int computeBytesSize(final int fieldNumber, final ByteString value) { return computeTagSize(fieldNumber) + computeBytesSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a {@code bytes} field, including * tag. */ public static int computeByteArraySize(final int fieldNumber, final byte[] value) { return computeTagSize(fieldNumber) + computeByteArraySizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a {@code bytes} field, including * tag. */ public static int computeByteBufferSize(final int fieldNumber, final ByteBuffer value) { return computeTagSize(fieldNumber) + computeByteBufferSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an embedded message in lazy field, * including tag. */ public static int computeLazyFieldSize(final int fieldNumber, final LazyFieldLite value) { return computeTagSize(fieldNumber) + computeLazyFieldSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an embedded message field, including * tag. */ public static int computeMessageSize(final int fieldNumber, final MessageLite value) { return computeTagSize(fieldNumber) + computeMessageSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an embedded message field, including * tag. */ static int computeMessageSize( final int fieldNumber, final MessageLite value, final Schema schema) { return computeTagSize(fieldNumber) + computeMessageSizeNoTag(value, schema); } /** * Compute the number of bytes that would be needed to encode a MessageSet extension to the * stream. For historical reasons, the wire format differs from normal fields. */ public static int computeMessageSetExtensionSize(final int fieldNumber, final MessageLite value) { return computeTagSize(WireFormat.MESSAGE_SET_ITEM) * 2 + computeUInt32Size(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber) + computeMessageSize(WireFormat.MESSAGE_SET_MESSAGE, value); } /** * Compute the number of bytes that would be needed to encode an unparsed MessageSet extension * field to the stream. For historical reasons, the wire format differs from normal fields. */ public static int computeRawMessageSetExtensionSize( final int fieldNumber, final ByteString value) { return computeTagSize(WireFormat.MESSAGE_SET_ITEM) * 2 + computeUInt32Size(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber) + computeBytesSize(WireFormat.MESSAGE_SET_MESSAGE, value); } /** * Compute the number of bytes that would be needed to encode a lazily parsed MessageSet extension * field to the stream. For historical reasons, the wire format differs from normal fields. */ public static int computeLazyFieldMessageSetExtensionSize( final int fieldNumber, final LazyFieldLite value) { return computeTagSize(WireFormat.MESSAGE_SET_ITEM) * 2 + computeUInt32Size(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber) + computeLazyFieldSize(WireFormat.MESSAGE_SET_MESSAGE, value); } // ----------------------------------------------------------------- /** Compute the number of bytes that would be needed to encode a tag. */ public static int computeTagSize(final int fieldNumber) { return computeUInt32SizeNoTag(WireFormat.makeTag(fieldNumber, 0)); } /** * Compute the number of bytes that would be needed to encode an {@code int32} field, including * tag. */ public static int computeInt32SizeNoTag(final int value) { return computeUInt64SizeNoTag((long) value); } /** Compute the number of bytes that would be needed to encode a {@code uint32} field. */ public static int computeUInt32SizeNoTag(final int value) { /* This code is ported from the C++ varint implementation. Implementation notes: To calcuate varint size, we want to count the number of 7 bit chunks required. Rather than using division by 7 to accomplish this, we use multiplication by 9/64. This has a number of important properties: * It's roughly 1/7.111111. This makes the 0 bits set case have the same value as the 7 bits set case, so offsetting by 1 gives us the correct value we want for integers up to 448 bits. * Multiplying by 9 is special. x * 9 = x << 3 + x, and so this multiplication can be done by a single shifted add on arm (add w0, w0, w0, lsl #3), or a single lea instruction (leal (%rax,%rax,8), %eax)) on x86. * Dividing by 64 is a 6 bit right shift. An explicit non-sign-extended right shift is used instead of the more obvious '/ 64' because that actually produces worse code on android arm64 at time of authoring because of sign extension. Rather than lsr w0, w0, #6 It would emit: add w16, w0, #0x3f (63) cmp w0, #0x0 (0) csel w0, w16, w0, lt asr w0, w0, #6 Summarized: floor(((Integer.SIZE - clz) / 7.1111) + 1 ((Integer.SIZE - clz) * 9) / 64 + 1 (((Integer.SIZE - clz) * 9) >>> 6) + 1 ((Integer.SIZE - clz) * 9 + (1 << 6)) >>> 6 (Integer.SIZE * 9 + (1 << 6) - clz * 9) >>> 6 (352 - clz * 9) >>> 6 on arm: (352 - clz - (clz << 3)) >>> 6 on x86: (352 - lea(clz, clz, 8)) >>> 6 If you make changes here, please validate their compiled output on different architectures and runtimes. */ int clz = Integer.numberOfLeadingZeros(value); return ((Integer.SIZE * 9 + (1 << 6)) - (clz * 9)) >>> 6; } /** Compute the number of bytes that would be needed to encode an {@code sint32} field. */ public static int computeSInt32SizeNoTag(final int value) { return computeUInt32SizeNoTag(encodeZigZag32(value)); } /** Compute the number of bytes that would be needed to encode a {@code fixed32} field. */ public static int computeFixed32SizeNoTag(@SuppressWarnings("unused") final int unused) { return FIXED32_SIZE; } /** Compute the number of bytes that would be needed to encode an {@code sfixed32} field. */ public static int computeSFixed32SizeNoTag(@SuppressWarnings("unused") final int unused) { return FIXED32_SIZE; } /** * Compute the number of bytes that would be needed to encode an {@code int64} field, including * tag. */ public static int computeInt64SizeNoTag(final long value) { return computeUInt64SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a {@code uint64} field, including * tag. */ public static int computeUInt64SizeNoTag(long value) { int clz = Long.numberOfLeadingZeros(value); // See computeUInt32SizeNoTag for explanation return ((Long.SIZE * 9 + (1 << 6)) - (clz * 9)) >>> 6; } /** Compute the number of bytes that would be needed to encode an {@code sint64} field. */ public static int computeSInt64SizeNoTag(final long value) { return computeUInt64SizeNoTag(encodeZigZag64(value)); } /** Compute the number of bytes that would be needed to encode a {@code fixed64} field. */ public static int computeFixed64SizeNoTag(@SuppressWarnings("unused") final long unused) { return FIXED64_SIZE; } /** Compute the number of bytes that would be needed to encode an {@code sfixed64} field. */ public static int computeSFixed64SizeNoTag(@SuppressWarnings("unused") final long unused) { return FIXED64_SIZE; } /** * Compute the number of bytes that would be needed to encode a {@code float} field, including * tag. */ public static int computeFloatSizeNoTag(@SuppressWarnings("unused") final float unused) { return FIXED32_SIZE; } /** * Compute the number of bytes that would be needed to encode a {@code double} field, including * tag. */ public static int computeDoubleSizeNoTag(@SuppressWarnings("unused") final double unused) { return FIXED64_SIZE; } /** Compute the number of bytes that would be needed to encode a {@code bool} field. */ public static int computeBoolSizeNoTag(@SuppressWarnings("unused") final boolean unused) { return 1; } /** * Compute the number of bytes that would be needed to encode an enum field. The provided value is * the numeric value used to represent the enum value on the wire (not the enum ordinal value). */ public static int computeEnumSizeNoTag(final int value) { return computeInt32SizeNoTag(value); } /** Compute the number of bytes that would be needed to encode a {@code string} field. */ public static int computeStringSizeNoTag(final String value) { int length; try { length = Utf8.encodedLength(value); } catch (UnpairedSurrogateException e) { // TODO: Consider using nio Charset methods instead. final byte[] bytes = value.getBytes(Internal.UTF_8); length = bytes.length; } return computeLengthDelimitedFieldSize(length); } /** * Compute the number of bytes that would be needed to encode an embedded message stored in lazy * field. */ public static int computeLazyFieldSizeNoTag(final LazyFieldLite value) { return computeLengthDelimitedFieldSize(value.getSerializedSize()); } /** Compute the number of bytes that would be needed to encode a {@code bytes} field. */ public static int computeBytesSizeNoTag(final ByteString value) { return computeLengthDelimitedFieldSize(value.size()); } /** Compute the number of bytes that would be needed to encode a {@code bytes} field. */ public static int computeByteArraySizeNoTag(final byte[] value) { return computeLengthDelimitedFieldSize(value.length); } /** Compute the number of bytes that would be needed to encode a {@code bytes} field. */ public static int computeByteBufferSizeNoTag(final ByteBuffer value) { return computeLengthDelimitedFieldSize(value.capacity()); } /** Compute the number of bytes that would be needed to encode an embedded message field. */ public static int computeMessageSizeNoTag(final MessageLite value) { return computeLengthDelimitedFieldSize(value.getSerializedSize()); } /** Compute the number of bytes that would be needed to encode an embedded message field. */ static int computeMessageSizeNoTag(final MessageLite value, final Schema schema) { return computeLengthDelimitedFieldSize(((AbstractMessageLite) value).getSerializedSize(schema)); } static int computeLengthDelimitedFieldSize(int fieldLength) { return computeUInt32SizeNoTag(fieldLength) + fieldLength; } /** * Encode a ZigZag-encoded 32-bit value. ZigZag encodes signed integers into values that can be * efficiently encoded with varint. (Otherwise, negative values must be sign-extended to 64 bits * to be varint encoded, thus always taking 10 bytes on the wire.) * * @param n A signed 32-bit integer. * @return An unsigned 32-bit integer, stored in a signed int because Java has no explicit * unsigned support. */ public static int encodeZigZag32(final int n) { // Note: the right-shift must be arithmetic return (n << 1) ^ (n >> 31); } /** * Encode a ZigZag-encoded 64-bit value. ZigZag encodes signed integers into values that can be * efficiently encoded with varint. (Otherwise, negative values must be sign-extended to 64 bits * to be varint encoded, thus always taking 10 bytes on the wire.) * * @param n A signed 64-bit integer. * @return An unsigned 64-bit integer, stored in a signed int because Java has no explicit * unsigned support. */ public static long encodeZigZag64(final long n) { // Note: the right-shift must be arithmetic return (n << 1) ^ (n >> 63); } // ================================================================= /** * Flushes the stream and forces any buffered bytes to be written. This does not flush the * underlying OutputStream. */ public abstract void flush() throws IOException; /** * If writing to a flat array, return the space left in the array. Otherwise, throws {@code * UnsupportedOperationException}. */ public abstract int spaceLeft(); /** * Verifies that {@link #spaceLeft()} returns zero. It's common to create a byte array that is * exactly big enough to hold a message, then write to it with a {@code CodedOutputStream}. * Calling {@code checkNoSpaceLeft()} after writing verifies that the message was actually as big * as expected, which can help catch bugs. */ public final void checkNoSpaceLeft() { if (spaceLeft() != 0) { throw new IllegalStateException("Did not write as much data as expected."); } } /** * If you create a CodedOutputStream around a simple flat array, you must not attempt to write * more bytes than the array has space. Otherwise, this exception will be thrown. */ public static class OutOfSpaceException extends IOException { private static final long serialVersionUID = -6947486886997889499L; private static final String MESSAGE = "CodedOutputStream was writing to a flat byte array and ran out of space."; OutOfSpaceException() { super(MESSAGE); } OutOfSpaceException(String explanationMessage) { super(MESSAGE + ": " + explanationMessage); } OutOfSpaceException(Throwable cause) { super(MESSAGE, cause); } OutOfSpaceException(String explanationMessage, Throwable cause) { super(MESSAGE + ": " + explanationMessage, cause); } } /** * Get the total number of bytes successfully written to this stream. The returned value is not * guaranteed to be accurate if exceptions have been found in the middle of writing. */ public abstract int getTotalBytesWritten(); // ================================================================= /** Write a {@code bytes} field to the stream. Visible for testing. */ abstract void writeByteArrayNoTag(final byte[] value, final int offset, final int length) throws IOException; final void inefficientWriteStringNoTag(String value, UnpairedSurrogateException cause) throws IOException { logger.log( Level.WARNING, "Converting ill-formed UTF-16. Your Protocol Buffer will not round trip correctly!", cause); // Unfortunately there does not appear to be any way to tell Java to encode // UTF-8 directly into our buffer, so we have to let it create its own byte // array and then copy. // TODO: Consider using nio Charset methods instead. final byte[] bytes = value.getBytes(Internal.UTF_8); try { writeUInt32NoTag(bytes.length); writeLazy(bytes, 0, bytes.length); } catch (IndexOutOfBoundsException e) { throw new OutOfSpaceException(e); } } // ================================================================= /** * Write a {@code group} field, including tag, to the stream. * * @deprecated groups are deprecated. */ @Deprecated public final void writeGroup(final int fieldNumber, final MessageLite value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_START_GROUP); writeGroupNoTag(value); writeTag(fieldNumber, WireFormat.WIRETYPE_END_GROUP); } /** * Write a {@code group} field, including tag, to the stream. * * @deprecated groups are deprecated. */ @Deprecated final void writeGroup(final int fieldNumber, final MessageLite value, Schema schema) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_START_GROUP); writeGroupNoTag(value, schema); writeTag(fieldNumber, WireFormat.WIRETYPE_END_GROUP); } /** * Write a {@code group} field to the stream. * * @deprecated groups are deprecated. */ @Deprecated public final void writeGroupNoTag(final MessageLite value) throws IOException { value.writeTo(this); } /** * Write a {@code group} field to the stream. * * @deprecated groups are deprecated. */ @Deprecated final void writeGroupNoTag(final MessageLite value, Schema schema) throws IOException { schema.writeTo(value, wrapper); } /** * Compute the number of bytes that would be needed to encode a {@code group} field, including * tag. * * @deprecated groups are deprecated. */ @Deprecated public static int computeGroupSize(final int fieldNumber, final MessageLite value) { return computeTagSize(fieldNumber) * 2 + value.getSerializedSize(); } /** * Compute the number of bytes that would be needed to encode a {@code group} field, including * tag. * * @deprecated groups are deprecated. */ @Deprecated static int computeGroupSize(final int fieldNumber, final MessageLite value, Schema schema) { return computeTagSize(fieldNumber) * 2 + computeGroupSizeNoTag(value, schema); } /** Compute the number of bytes that would be needed to encode a {@code group} field. */ @Deprecated @InlineMe(replacement = "value.getSerializedSize()") public static int computeGroupSizeNoTag(final MessageLite value) { return value.getSerializedSize(); } /** Compute the number of bytes that would be needed to encode a {@code group} field. */ @Deprecated static int computeGroupSizeNoTag(final MessageLite value, Schema schema) { return ((AbstractMessageLite) value).getSerializedSize(schema); } /** * Encode and write a varint. {@code value} is treated as unsigned, so it won't be sign-extended * if negative. * * @deprecated use {@link #writeUInt32NoTag} instead. */ @Deprecated @InlineMe(replacement = "this.writeUInt32NoTag(value)") public final void writeRawVarint32(int value) throws IOException { writeUInt32NoTag(value); } /** * Encode and write a varint. * * @deprecated use {@link #writeUInt64NoTag} instead. */ @Deprecated @InlineMe(replacement = "this.writeUInt64NoTag(value)") public final void writeRawVarint64(long value) throws IOException { writeUInt64NoTag(value); } /** * Compute the number of bytes that would be needed to encode a varint. {@code value} is treated * as unsigned, so it won't be sign-extended if negative. * * @deprecated use {@link #computeUInt32SizeNoTag(int)} instead. */ @Deprecated @InlineMe( replacement = "CodedOutputStream.computeUInt32SizeNoTag(value)", imports = "com.google.protobuf.CodedOutputStream") public static int computeRawVarint32Size(final int value) { return computeUInt32SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a varint. * * @deprecated use {@link #computeUInt64SizeNoTag(long)} instead. */ @Deprecated @InlineMe( replacement = "CodedOutputStream.computeUInt64SizeNoTag(value)", imports = "com.google.protobuf.CodedOutputStream") public static int computeRawVarint64Size(long value) { return computeUInt64SizeNoTag(value); } /** * Write a little-endian 32-bit integer. * * @deprecated Use {@link #writeFixed32NoTag} instead. */ @Deprecated @InlineMe(replacement = "this.writeFixed32NoTag(value)") public final void writeRawLittleEndian32(final int value) throws IOException { writeFixed32NoTag(value); } /** * Write a little-endian 64-bit integer. * * @deprecated Use {@link #writeFixed64NoTag} instead. */ @Deprecated @InlineMe(replacement = "this.writeFixed64NoTag(value)") public final void writeRawLittleEndian64(final long value) throws IOException { writeFixed64NoTag(value); } // ================================================================= /** A {@link CodedOutputStream} that writes directly to a byte array. */ private static class ArrayEncoder extends CodedOutputStream { private final byte[] buffer; private final int offset; private final int limit; private int position; ArrayEncoder(byte[] buffer, int offset, int length) { if (buffer == null) { throw new NullPointerException("buffer"); } if ((offset | length | (buffer.length - (offset + length))) < 0) { throw new IllegalArgumentException( String.format( "Array range is invalid. Buffer.length=%d, offset=%d, length=%d", buffer.length, offset, length)); } this.buffer = buffer; this.offset = offset; position = offset; limit = offset + length; } @Override public final void writeTag(final int fieldNumber, final int wireType) throws IOException { writeUInt32NoTag(WireFormat.makeTag(fieldNumber, wireType)); } @Override public final void writeInt32(final int fieldNumber, final int value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT); writeInt32NoTag(value); } @Override public final void writeUInt32(final int fieldNumber, final int value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT); writeUInt32NoTag(value); } @Override public final void writeFixed32(final int fieldNumber, final int value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED32); writeFixed32NoTag(value); } @Override public final void writeUInt64(final int fieldNumber, final long value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT); writeUInt64NoTag(value); } @Override public final void writeFixed64(final int fieldNumber, final long value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED64); writeFixed64NoTag(value); } @Override public final void writeBool(final int fieldNumber, final boolean value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT); write((byte) (value ? 1 : 0)); } @Override public final void writeString(final int fieldNumber, final String value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeStringNoTag(value); } @Override public final void writeBytes(final int fieldNumber, final ByteString value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeBytesNoTag(value); } @Override public final void writeByteArray(final int fieldNumber, final byte[] value) throws IOException { writeByteArray(fieldNumber, value, 0, value.length); } @Override public final void writeByteArray( final int fieldNumber, final byte[] value, final int offset, final int length) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeByteArrayNoTag(value, offset, length); } @Override public final void writeByteBuffer(final int fieldNumber, final ByteBuffer value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeUInt32NoTag(value.capacity()); writeRawBytes(value); } @Override public final void writeBytesNoTag(final ByteString value) throws IOException { writeUInt32NoTag(value.size()); value.writeTo(this); } @Override public final void writeByteArrayNoTag(final byte[] value, int offset, int length) throws IOException { writeUInt32NoTag(length); write(value, offset, length); } @Override public final void writeRawBytes(final ByteBuffer value) throws IOException { if (value.hasArray()) { write(value.array(), value.arrayOffset(), value.capacity()); } else { ByteBuffer duplicated = value.duplicate(); Java8Compatibility.clear(duplicated); write(duplicated); } } @Override public final void writeMessage(final int fieldNumber, final MessageLite value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeMessageNoTag(value); } @Override final void writeMessage(final int fieldNumber, final MessageLite value, Schema schema) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeUInt32NoTag(((AbstractMessageLite) value).getSerializedSize(schema)); schema.writeTo(value, wrapper); } @Override public final void writeMessageSetExtension(final int fieldNumber, final MessageLite value) throws IOException { writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP); writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber); writeMessage(WireFormat.MESSAGE_SET_MESSAGE, value); writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP); } @Override public final void writeRawMessageSetExtension(final int fieldNumber, final ByteString value) throws IOException { writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP); writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber); writeBytes(WireFormat.MESSAGE_SET_MESSAGE, value); writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP); } @Override public final void writeMessageNoTag(final MessageLite value) throws IOException { writeUInt32NoTag(value.getSerializedSize()); value.writeTo(this); } @Override final void writeMessageNoTag(final MessageLite value, Schema schema) throws IOException { writeUInt32NoTag(((AbstractMessageLite) value).getSerializedSize(schema)); schema.writeTo(value, wrapper); } @Override public final void write(byte value) throws IOException { try { buffer[position++] = value; } catch (IndexOutOfBoundsException e) { throw new OutOfSpaceException( String.format("Pos: %d, limit: %d, len: %d", position, limit, 1), e); } } @Override public final void writeInt32NoTag(int value) throws IOException { if (value >= 0) { writeUInt32NoTag(value); } else { // Must sign-extend. writeUInt64NoTag(value); } } @Override public final void writeUInt32NoTag(int value) throws IOException { try { while (true) { if ((value & ~0x7F) == 0) { buffer[position++] = (byte) value; return; } else { buffer[position++] = (byte) ((value | 0x80) & 0xFF); value >>>= 7; } } } catch (IndexOutOfBoundsException e) { throw new OutOfSpaceException( String.format("Pos: %d, limit: %d, len: %d", position, limit, 1), e); } } @Override public final void writeFixed32NoTag(int value) throws IOException { try { buffer[position++] = (byte) (value & 0xFF); buffer[position++] = (byte) ((value >> 8) & 0xFF); buffer[position++] = (byte) ((value >> 16) & 0xFF); buffer[position++] = (byte) ((value >> 24) & 0xFF); } catch (IndexOutOfBoundsException e) { throw new OutOfSpaceException( String.format("Pos: %d, limit: %d, len: %d", position, limit, 1), e); } } @Override public final void writeUInt64NoTag(long value) throws IOException { if (HAS_UNSAFE_ARRAY_OPERATIONS && spaceLeft() >= MAX_VARINT_SIZE) { while (true) { if ((value & ~0x7FL) == 0) { UnsafeUtil.putByte(buffer, position++, (byte) value); return; } else { UnsafeUtil.putByte(buffer, position++, (byte) (((int) value | 0x80) & 0xFF)); value >>>= 7; } } } else { try { while (true) { if ((value & ~0x7FL) == 0) { buffer[position++] = (byte) value; return; } else { buffer[position++] = (byte) (((int) value | 0x80) & 0xFF); value >>>= 7; } } } catch (IndexOutOfBoundsException e) { throw new OutOfSpaceException( String.format("Pos: %d, limit: %d, len: %d", position, limit, 1), e); } } } @Override public final void writeFixed64NoTag(long value) throws IOException { try { buffer[position++] = (byte) ((int) (value) & 0xFF); buffer[position++] = (byte) ((int) (value >> 8) & 0xFF); buffer[position++] = (byte) ((int) (value >> 16) & 0xFF); buffer[position++] = (byte) ((int) (value >> 24) & 0xFF); buffer[position++] = (byte) ((int) (value >> 32) & 0xFF); buffer[position++] = (byte) ((int) (value >> 40) & 0xFF); buffer[position++] = (byte) ((int) (value >> 48) & 0xFF); buffer[position++] = (byte) ((int) (value >> 56) & 0xFF); } catch (IndexOutOfBoundsException e) { throw new OutOfSpaceException( String.format("Pos: %d, limit: %d, len: %d", position, limit, 1), e); } } @Override public final void write(byte[] value, int offset, int length) throws IOException { try { System.arraycopy(value, offset, buffer, position, length); position += length; } catch (IndexOutOfBoundsException e) { throw new OutOfSpaceException( String.format("Pos: %d, limit: %d, len: %d", position, limit, length), e); } } @Override public final void writeLazy(byte[] value, int offset, int length) throws IOException { write(value, offset, length); } @Override public final void write(ByteBuffer value) throws IOException { final int length = value.remaining(); try { value.get(buffer, position, length); position += length; } catch (IndexOutOfBoundsException e) { throw new OutOfSpaceException( String.format("Pos: %d, limit: %d, len: %d", position, limit, length), e); } } @Override public final void writeLazy(ByteBuffer value) throws IOException { write(value); } @Override public final void writeStringNoTag(String value) throws IOException { final int oldPosition = position; try { // UTF-8 byte length of the string is at least its UTF-16 code unit length (value.length()), // and at most 3 times of it. We take advantage of this in both branches below. final int maxLength = value.length() * Utf8.MAX_BYTES_PER_CHAR; final int maxLengthVarIntSize = computeUInt32SizeNoTag(maxLength); final int minLengthVarIntSize = computeUInt32SizeNoTag(value.length()); if (minLengthVarIntSize == maxLengthVarIntSize) { position = oldPosition + minLengthVarIntSize; int newPosition = Utf8.encode(value, buffer, position, spaceLeft()); // Since this class is stateful and tracks the position, we rewind and store the state, // prepend the length, then reset it back to the end of the string. position = oldPosition; int length = newPosition - oldPosition - minLengthVarIntSize; writeUInt32NoTag(length); position = newPosition; } else { int length = Utf8.encodedLength(value); writeUInt32NoTag(length); position = Utf8.encode(value, buffer, position, spaceLeft()); } } catch (UnpairedSurrogateException e) { // Roll back the change - we fall back to inefficient path. position = oldPosition; // TODO: We should throw an IOException here instead. inefficientWriteStringNoTag(value, e); } catch (IndexOutOfBoundsException e) { throw new OutOfSpaceException(e); } } @Override public void flush() { // Do nothing. } @Override public final int spaceLeft() { return limit - position; } @Override public final int getTotalBytesWritten() { return position - offset; } } /** * A {@link CodedOutputStream} that writes directly to a heap {@link ByteBuffer}. Writes are done * directly to the underlying array. The buffer position is only updated after a flush. */ private static final class HeapNioEncoder extends ArrayEncoder { private final ByteBuffer byteBuffer; private int initialPosition; HeapNioEncoder(ByteBuffer byteBuffer) { super( byteBuffer.array(), byteBuffer.arrayOffset() + byteBuffer.position(), byteBuffer.remaining()); this.byteBuffer = byteBuffer; this.initialPosition = byteBuffer.position(); } @Override public void flush() { // Update the position on the buffer. Java8Compatibility.position(byteBuffer, initialPosition + getTotalBytesWritten()); } } /** * A {@link CodedOutputStream} that writes directly to a direct {@link ByteBuffer}, using only * safe operations.. */ private static final class SafeDirectNioEncoder extends CodedOutputStream { private final ByteBuffer originalBuffer; private final ByteBuffer buffer; private final int initialPosition; SafeDirectNioEncoder(ByteBuffer buffer) { this.originalBuffer = buffer; this.buffer = buffer.duplicate().order(ByteOrder.LITTLE_ENDIAN); initialPosition = buffer.position(); } @Override public void writeTag(final int fieldNumber, final int wireType) throws IOException { writeUInt32NoTag(WireFormat.makeTag(fieldNumber, wireType)); } @Override public void writeInt32(final int fieldNumber, final int value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT); writeInt32NoTag(value); } @Override public void writeUInt32(final int fieldNumber, final int value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT); writeUInt32NoTag(value); } @Override public void writeFixed32(final int fieldNumber, final int value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED32); writeFixed32NoTag(value); } @Override public void writeUInt64(final int fieldNumber, final long value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT); writeUInt64NoTag(value); } @Override public void writeFixed64(final int fieldNumber, final long value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED64); writeFixed64NoTag(value); } @Override public void writeBool(final int fieldNumber, final boolean value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT); write((byte) (value ? 1 : 0)); } @Override public void writeString(final int fieldNumber, final String value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeStringNoTag(value); } @Override public void writeBytes(final int fieldNumber, final ByteString value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeBytesNoTag(value); } @Override public void writeByteArray(final int fieldNumber, final byte[] value) throws IOException { writeByteArray(fieldNumber, value, 0, value.length); } @Override public void writeByteArray( final int fieldNumber, final byte[] value, final int offset, final int length) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeByteArrayNoTag(value, offset, length); } @Override public void writeByteBuffer(final int fieldNumber, final ByteBuffer value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeUInt32NoTag(value.capacity()); writeRawBytes(value); } @Override public void writeMessage(final int fieldNumber, final MessageLite value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeMessageNoTag(value); } @Override void writeMessage(final int fieldNumber, final MessageLite value, Schema schema) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeMessageNoTag(value, schema); } @Override public void writeMessageSetExtension(final int fieldNumber, final MessageLite value) throws IOException { writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP); writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber); writeMessage(WireFormat.MESSAGE_SET_MESSAGE, value); writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP); } @Override public void writeRawMessageSetExtension(final int fieldNumber, final ByteString value) throws IOException { writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP); writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber); writeBytes(WireFormat.MESSAGE_SET_MESSAGE, value); writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP); } @Override public void writeMessageNoTag(final MessageLite value) throws IOException { writeUInt32NoTag(value.getSerializedSize()); value.writeTo(this); } @Override void writeMessageNoTag(final MessageLite value, Schema schema) throws IOException { writeUInt32NoTag(((AbstractMessageLite) value).getSerializedSize(schema)); schema.writeTo(value, wrapper); } @Override public void write(byte value) throws IOException { try { buffer.put(value); } catch (BufferOverflowException e) { throw new OutOfSpaceException(e); } } @Override public void writeBytesNoTag(final ByteString value) throws IOException { writeUInt32NoTag(value.size()); value.writeTo(this); } @Override public void writeByteArrayNoTag(final byte[] value, int offset, int length) throws IOException { writeUInt32NoTag(length); write(value, offset, length); } @Override public void writeRawBytes(final ByteBuffer value) throws IOException { if (value.hasArray()) { write(value.array(), value.arrayOffset(), value.capacity()); } else { ByteBuffer duplicated = value.duplicate(); Java8Compatibility.clear(duplicated); write(duplicated); } } @Override public void writeInt32NoTag(int value) throws IOException { if (value >= 0) { writeUInt32NoTag(value); } else { // Must sign-extend. writeUInt64NoTag(value); } } @Override public void writeUInt32NoTag(int value) throws IOException { try { while (true) { if ((value & ~0x7F) == 0) { buffer.put((byte) value); return; } else { buffer.put((byte) ((value | 0x80) & 0xFF)); value >>>= 7; } } } catch (BufferOverflowException e) { throw new OutOfSpaceException(e); } } @Override public void writeFixed32NoTag(int value) throws IOException { try { buffer.putInt(value); } catch (BufferOverflowException e) { throw new OutOfSpaceException(e); } } @Override public void writeUInt64NoTag(long value) throws IOException { try { while (true) { if ((value & ~0x7FL) == 0) { buffer.put((byte) value); return; } else { buffer.put((byte) (((int) value | 0x80) & 0xFF)); value >>>= 7; } } } catch (BufferOverflowException e) { throw new OutOfSpaceException(e); } } @Override public void writeFixed64NoTag(long value) throws IOException { try { buffer.putLong(value); } catch (BufferOverflowException e) { throw new OutOfSpaceException(e); } } @Override public void write(byte[] value, int offset, int length) throws IOException { try { buffer.put(value, offset, length); } catch (IndexOutOfBoundsException e) { throw new OutOfSpaceException(e); } catch (BufferOverflowException e) { throw new OutOfSpaceException(e); } } @Override public void writeLazy(byte[] value, int offset, int length) throws IOException { write(value, offset, length); } @Override public void write(ByteBuffer value) throws IOException { try { buffer.put(value); } catch (BufferOverflowException e) { throw new OutOfSpaceException(e); } } @Override public void writeLazy(ByteBuffer value) throws IOException { write(value); } @Override public void writeStringNoTag(String value) throws IOException { final int startPos = buffer.position(); try { // UTF-8 byte length of the string is at least its UTF-16 code unit length (value.length()), // and at most 3 times of it. We take advantage of this in both branches below. final int maxEncodedSize = value.length() * Utf8.MAX_BYTES_PER_CHAR; final int maxLengthVarIntSize = computeUInt32SizeNoTag(maxEncodedSize); final int minLengthVarIntSize = computeUInt32SizeNoTag(value.length()); if (minLengthVarIntSize == maxLengthVarIntSize) { // Save the current position and increment past the length field. We'll come back // and write the length field after the encoding is complete. final int startOfBytes = buffer.position() + minLengthVarIntSize; Java8Compatibility.position(buffer, startOfBytes); // Encode the string. encode(value); // Now go back to the beginning and write the length. int endOfBytes = buffer.position(); Java8Compatibility.position(buffer, startPos); writeUInt32NoTag(endOfBytes - startOfBytes); // Reposition the buffer past the written data. Java8Compatibility.position(buffer, endOfBytes); } else { final int length = Utf8.encodedLength(value); writeUInt32NoTag(length); encode(value); } } catch (UnpairedSurrogateException e) { // Roll back the change and convert to an IOException. Java8Compatibility.position(buffer, startPos); // TODO: We should throw an IOException here instead. inefficientWriteStringNoTag(value, e); } catch (IllegalArgumentException e) { // Thrown by buffer.position() if out of range. throw new OutOfSpaceException(e); } } @Override public void flush() { // Update the position of the original buffer. Java8Compatibility.position(originalBuffer, buffer.position()); } @Override public int spaceLeft() { return buffer.remaining(); } @Override public int getTotalBytesWritten() { return buffer.position() - initialPosition; } private void encode(String value) throws IOException { try { Utf8.encodeUtf8(value, buffer); } catch (IndexOutOfBoundsException e) { throw new OutOfSpaceException(e); } } } /** * A {@link CodedOutputStream} that writes directly to a direct {@link ByteBuffer} using {@code * sun.misc.Unsafe}. */ private static final class UnsafeDirectNioEncoder extends CodedOutputStream { private final ByteBuffer originalBuffer; private final ByteBuffer buffer; private final long address; private final long initialPosition; private final long limit; private final long oneVarintLimit; private long position; UnsafeDirectNioEncoder(ByteBuffer buffer) { this.originalBuffer = buffer; this.buffer = buffer.duplicate().order(ByteOrder.LITTLE_ENDIAN); address = UnsafeUtil.addressOffset(buffer); initialPosition = address + buffer.position(); limit = address + buffer.limit(); oneVarintLimit = limit - MAX_VARINT_SIZE; position = initialPosition; } static boolean isSupported() { return UnsafeUtil.hasUnsafeByteBufferOperations(); } @Override public void writeTag(int fieldNumber, int wireType) throws IOException { writeUInt32NoTag(WireFormat.makeTag(fieldNumber, wireType)); } @Override public void writeInt32(int fieldNumber, int value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT); writeInt32NoTag(value); } @Override public void writeUInt32(int fieldNumber, int value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT); writeUInt32NoTag(value); } @Override public void writeFixed32(int fieldNumber, int value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED32); writeFixed32NoTag(value); } @Override public void writeUInt64(int fieldNumber, long value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT); writeUInt64NoTag(value); } @Override public void writeFixed64(int fieldNumber, long value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED64); writeFixed64NoTag(value); } @Override public void writeBool(int fieldNumber, boolean value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT); write((byte) (value ? 1 : 0)); } @Override public void writeString(int fieldNumber, String value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeStringNoTag(value); } @Override public void writeBytes(int fieldNumber, ByteString value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeBytesNoTag(value); } @Override public void writeByteArray(int fieldNumber, byte[] value) throws IOException { writeByteArray(fieldNumber, value, 0, value.length); } @Override public void writeByteArray(int fieldNumber, byte[] value, int offset, int length) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeByteArrayNoTag(value, offset, length); } @Override public void writeByteBuffer(int fieldNumber, ByteBuffer value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeUInt32NoTag(value.capacity()); writeRawBytes(value); } @Override public void writeMessage(int fieldNumber, MessageLite value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeMessageNoTag(value); } @Override void writeMessage(int fieldNumber, MessageLite value, Schema schema) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeMessageNoTag(value, schema); } @Override public void writeMessageSetExtension(int fieldNumber, MessageLite value) throws IOException { writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP); writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber); writeMessage(WireFormat.MESSAGE_SET_MESSAGE, value); writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP); } @Override public void writeRawMessageSetExtension(int fieldNumber, ByteString value) throws IOException { writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP); writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber); writeBytes(WireFormat.MESSAGE_SET_MESSAGE, value); writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP); } @Override public void writeMessageNoTag(MessageLite value) throws IOException { writeUInt32NoTag(value.getSerializedSize()); value.writeTo(this); } @Override void writeMessageNoTag(MessageLite value, Schema schema) throws IOException { writeUInt32NoTag(((AbstractMessageLite) value).getSerializedSize(schema)); schema.writeTo(value, wrapper); } @Override public void write(byte value) throws IOException { if (position >= limit) { throw new OutOfSpaceException( String.format("Pos: %d, limit: %d, len: %d", position, limit, 1)); } UnsafeUtil.putByte(position++, value); } @Override public void writeBytesNoTag(ByteString value) throws IOException { writeUInt32NoTag(value.size()); value.writeTo(this); } @Override public void writeByteArrayNoTag(byte[] value, int offset, int length) throws IOException { writeUInt32NoTag(length); write(value, offset, length); } @Override public void writeRawBytes(ByteBuffer value) throws IOException { if (value.hasArray()) { write(value.array(), value.arrayOffset(), value.capacity()); } else { ByteBuffer duplicated = value.duplicate(); Java8Compatibility.clear(duplicated); write(duplicated); } } @Override public void writeInt32NoTag(int value) throws IOException { if (value >= 0) { writeUInt32NoTag(value); } else { // Must sign-extend. writeUInt64NoTag(value); } } @Override public void writeUInt32NoTag(int value) throws IOException { if (position <= oneVarintLimit) { // Optimization to avoid bounds checks on each iteration. while (true) { if ((value & ~0x7F) == 0) { UnsafeUtil.putByte(position++, (byte) value); return; } else { UnsafeUtil.putByte(position++, (byte) ((value | 0x80) & 0xFF)); value >>>= 7; } } } else { while (position < limit) { if ((value & ~0x7F) == 0) { UnsafeUtil.putByte(position++, (byte) value); return; } else { UnsafeUtil.putByte(position++, (byte) ((value | 0x80) & 0xFF)); value >>>= 7; } } throw new OutOfSpaceException( String.format("Pos: %d, limit: %d, len: %d", position, limit, 1)); } } @Override public void writeFixed32NoTag(int value) throws IOException { buffer.putInt(bufferPos(position), value); position += FIXED32_SIZE; } @Override public void writeUInt64NoTag(long value) throws IOException { if (position <= oneVarintLimit) { // Optimization to avoid bounds checks on each iteration. while (true) { if ((value & ~0x7FL) == 0) { UnsafeUtil.putByte(position++, (byte) value); return; } else { UnsafeUtil.putByte(position++, (byte) (((int) value | 0x80) & 0xFF)); value >>>= 7; } } } else { while (position < limit) { if ((value & ~0x7FL) == 0) { UnsafeUtil.putByte(position++, (byte) value); return; } else { UnsafeUtil.putByte(position++, (byte) (((int) value | 0x80) & 0xFF)); value >>>= 7; } } throw new OutOfSpaceException( String.format("Pos: %d, limit: %d, len: %d", position, limit, 1)); } } @Override public void writeFixed64NoTag(long value) throws IOException { buffer.putLong(bufferPos(position), value); position += FIXED64_SIZE; } @Override public void write(byte[] value, int offset, int length) throws IOException { if (value == null || offset < 0 || length < 0 || (value.length - length) < offset || (limit - length) < position) { if (value == null) { throw new NullPointerException("value"); } throw new OutOfSpaceException( String.format("Pos: %d, limit: %d, len: %d", position, limit, length)); } UnsafeUtil.copyMemory(value, offset, position, length); position += length; } @Override public void writeLazy(byte[] value, int offset, int length) throws IOException { write(value, offset, length); } @Override public void write(ByteBuffer value) throws IOException { try { int length = value.remaining(); repositionBuffer(position); buffer.put(value); position += length; } catch (BufferOverflowException e) { throw new OutOfSpaceException(e); } } @Override public void writeLazy(ByteBuffer value) throws IOException { write(value); } @Override public void writeStringNoTag(String value) throws IOException { long prevPos = position; try { // UTF-8 byte length of the string is at least its UTF-16 code unit length (value.length()), // and at most 3 times of it. We take advantage of this in both branches below. int maxEncodedSize = value.length() * Utf8.MAX_BYTES_PER_CHAR; int maxLengthVarIntSize = computeUInt32SizeNoTag(maxEncodedSize); int minLengthVarIntSize = computeUInt32SizeNoTag(value.length()); if (minLengthVarIntSize == maxLengthVarIntSize) { // Save the current position and increment past the length field. We'll come back // and write the length field after the encoding is complete. int stringStart = bufferPos(position) + minLengthVarIntSize; Java8Compatibility.position(buffer, stringStart); // Encode the string. Utf8.encodeUtf8(value, buffer); // Write the length and advance the position. int length = buffer.position() - stringStart; writeUInt32NoTag(length); position += length; } else { // Calculate and write the encoded length. int length = Utf8.encodedLength(value); writeUInt32NoTag(length); // Write the string and advance the position. repositionBuffer(position); Utf8.encodeUtf8(value, buffer); position += length; } } catch (UnpairedSurrogateException e) { // Roll back the change and convert to an IOException. position = prevPos; repositionBuffer(position); // TODO: We should throw an IOException here instead. inefficientWriteStringNoTag(value, e); } catch (IllegalArgumentException e) { // Thrown by buffer.position() if out of range. throw new OutOfSpaceException(e); } catch (IndexOutOfBoundsException e) { throw new OutOfSpaceException(e); } } @Override public void flush() { // Update the position of the original buffer. Java8Compatibility.position(originalBuffer, bufferPos(position)); } @Override public int spaceLeft() { return (int) (limit - position); } @Override public int getTotalBytesWritten() { return (int) (position - initialPosition); } private void repositionBuffer(long pos) { Java8Compatibility.position(buffer, bufferPos(pos)); } private int bufferPos(long pos) { return (int) (pos - address); } } /** Abstract base class for buffered encoders. */ private abstract static class AbstractBufferedEncoder extends CodedOutputStream { final byte[] buffer; final int limit; int position; int totalBytesWritten; AbstractBufferedEncoder(int bufferSize) { if (bufferSize < 0) { throw new IllegalArgumentException("bufferSize must be >= 0"); } // As an optimization, we require that the buffer be able to store at least 2 // varints so that we can buffer any integer write (tag + value). This reduces the // number of range checks for a single write to 1 (i.e. if there is not enough space // to buffer the tag+value, flush and then buffer it). this.buffer = new byte[max(bufferSize, MAX_VARINT_SIZE * 2)]; this.limit = buffer.length; } @Override public final int spaceLeft() { throw new UnsupportedOperationException( "spaceLeft() can only be called on CodedOutputStreams that are " + "writing to a flat array or ByteBuffer."); } @Override public final int getTotalBytesWritten() { return totalBytesWritten; } /** * This method does not perform bounds checking on the array. Checking array bounds is the * responsibility of the caller. */ final void buffer(byte value) { buffer[position++] = value; totalBytesWritten++; } /** * This method does not perform bounds checking on the array. Checking array bounds is the * responsibility of the caller. */ final void bufferTag(final int fieldNumber, final int wireType) { bufferUInt32NoTag(WireFormat.makeTag(fieldNumber, wireType)); } /** * This method does not perform bounds checking on the array. Checking array bounds is the * responsibility of the caller. */ final void bufferInt32NoTag(final int value) { if (value >= 0) { bufferUInt32NoTag(value); } else { // Must sign-extend. bufferUInt64NoTag(value); } } /** * This method does not perform bounds checking on the array. Checking array bounds is the * responsibility of the caller. */ final void bufferUInt32NoTag(int value) { if (HAS_UNSAFE_ARRAY_OPERATIONS) { final long originalPos = position; while (true) { if ((value & ~0x7F) == 0) { UnsafeUtil.putByte(buffer, position++, (byte) value); break; } else { UnsafeUtil.putByte(buffer, position++, (byte) ((value | 0x80) & 0xFF)); value >>>= 7; } } int delta = (int) (position - originalPos); totalBytesWritten += delta; } else { while (true) { if ((value & ~0x7F) == 0) { buffer[position++] = (byte) value; totalBytesWritten++; return; } else { buffer[position++] = (byte) ((value | 0x80) & 0xFF); totalBytesWritten++; value >>>= 7; } } } } /** * This method does not perform bounds checking on the array. Checking array bounds is the * responsibility of the caller. */ final void bufferUInt64NoTag(long value) { if (HAS_UNSAFE_ARRAY_OPERATIONS) { final long originalPos = position; while (true) { if ((value & ~0x7FL) == 0) { UnsafeUtil.putByte(buffer, position++, (byte) value); break; } else { UnsafeUtil.putByte(buffer, position++, (byte) (((int) value | 0x80) & 0xFF)); value >>>= 7; } } int delta = (int) (position - originalPos); totalBytesWritten += delta; } else { while (true) { if ((value & ~0x7FL) == 0) { buffer[position++] = (byte) value; totalBytesWritten++; return; } else { buffer[position++] = (byte) (((int) value | 0x80) & 0xFF); totalBytesWritten++; value >>>= 7; } } } } /** * This method does not perform bounds checking on the array. Checking array bounds is the * responsibility of the caller. */ final void bufferFixed32NoTag(int value) { buffer[position++] = (byte) (value & 0xFF); buffer[position++] = (byte) ((value >> 8) & 0xFF); buffer[position++] = (byte) ((value >> 16) & 0xFF); buffer[position++] = (byte) ((value >> 24) & 0xFF); totalBytesWritten += FIXED32_SIZE; } /** * This method does not perform bounds checking on the array. Checking array bounds is the * responsibility of the caller. */ final void bufferFixed64NoTag(long value) { buffer[position++] = (byte) (value & 0xFF); buffer[position++] = (byte) ((value >> 8) & 0xFF); buffer[position++] = (byte) ((value >> 16) & 0xFF); buffer[position++] = (byte) ((value >> 24) & 0xFF); buffer[position++] = (byte) ((int) (value >> 32) & 0xFF); buffer[position++] = (byte) ((int) (value >> 40) & 0xFF); buffer[position++] = (byte) ((int) (value >> 48) & 0xFF); buffer[position++] = (byte) ((int) (value >> 56) & 0xFF); totalBytesWritten += FIXED64_SIZE; } } /** * A {@link CodedOutputStream} that decorates a {@link ByteOutput}. It internal buffer only to * support string encoding operations. All other writes are just passed through to the {@link * ByteOutput}. */ private static final class ByteOutputEncoder extends AbstractBufferedEncoder { private final ByteOutput out; ByteOutputEncoder(ByteOutput out, int bufferSize) { super(bufferSize); if (out == null) { throw new NullPointerException("out"); } this.out = out; } @Override public void writeTag(final int fieldNumber, final int wireType) throws IOException { writeUInt32NoTag(WireFormat.makeTag(fieldNumber, wireType)); } @Override public void writeInt32(final int fieldNumber, final int value) throws IOException { flushIfNotAvailable(MAX_VARINT_SIZE * 2); bufferTag(fieldNumber, WireFormat.WIRETYPE_VARINT); bufferInt32NoTag(value); } @Override public void writeUInt32(final int fieldNumber, final int value) throws IOException { flushIfNotAvailable(MAX_VARINT_SIZE * 2); bufferTag(fieldNumber, WireFormat.WIRETYPE_VARINT); bufferUInt32NoTag(value); } @Override public void writeFixed32(final int fieldNumber, final int value) throws IOException { flushIfNotAvailable(MAX_VARINT_SIZE + FIXED32_SIZE); bufferTag(fieldNumber, WireFormat.WIRETYPE_FIXED32); bufferFixed32NoTag(value); } @Override public void writeUInt64(final int fieldNumber, final long value) throws IOException { flushIfNotAvailable(MAX_VARINT_SIZE * 2); bufferTag(fieldNumber, WireFormat.WIRETYPE_VARINT); bufferUInt64NoTag(value); } @Override public void writeFixed64(final int fieldNumber, final long value) throws IOException { flushIfNotAvailable(MAX_VARINT_SIZE + FIXED64_SIZE); bufferTag(fieldNumber, WireFormat.WIRETYPE_FIXED64); bufferFixed64NoTag(value); } @Override public void writeBool(final int fieldNumber, final boolean value) throws IOException { flushIfNotAvailable(MAX_VARINT_SIZE + 1); bufferTag(fieldNumber, WireFormat.WIRETYPE_VARINT); buffer((byte) (value ? 1 : 0)); } @Override public void writeString(final int fieldNumber, final String value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeStringNoTag(value); } @Override public void writeBytes(final int fieldNumber, final ByteString value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeBytesNoTag(value); } @Override public void writeByteArray(final int fieldNumber, final byte[] value) throws IOException { writeByteArray(fieldNumber, value, 0, value.length); } @Override public void writeByteArray( final int fieldNumber, final byte[] value, final int offset, final int length) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeByteArrayNoTag(value, offset, length); } @Override public void writeByteBuffer(final int fieldNumber, final ByteBuffer value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeUInt32NoTag(value.capacity()); writeRawBytes(value); } @Override public void writeBytesNoTag(final ByteString value) throws IOException { writeUInt32NoTag(value.size()); value.writeTo(this); } @Override public void writeByteArrayNoTag(final byte[] value, int offset, int length) throws IOException { writeUInt32NoTag(length); write(value, offset, length); } @Override public void writeRawBytes(final ByteBuffer value) throws IOException { if (value.hasArray()) { write(value.array(), value.arrayOffset(), value.capacity()); } else { ByteBuffer duplicated = value.duplicate(); Java8Compatibility.clear(duplicated); write(duplicated); } } @Override public void writeMessage(final int fieldNumber, final MessageLite value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeMessageNoTag(value); } @Override void writeMessage(final int fieldNumber, final MessageLite value, Schema schema) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeMessageNoTag(value, schema); } @Override public void writeMessageSetExtension(final int fieldNumber, final MessageLite value) throws IOException { writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP); writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber); writeMessage(WireFormat.MESSAGE_SET_MESSAGE, value); writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP); } @Override public void writeRawMessageSetExtension(final int fieldNumber, final ByteString value) throws IOException { writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP); writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber); writeBytes(WireFormat.MESSAGE_SET_MESSAGE, value); writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP); } @Override public void writeMessageNoTag(final MessageLite value) throws IOException { writeUInt32NoTag(value.getSerializedSize()); value.writeTo(this); } @Override void writeMessageNoTag(final MessageLite value, Schema schema) throws IOException { writeUInt32NoTag(((AbstractMessageLite) value).getSerializedSize(schema)); schema.writeTo(value, wrapper); } @Override public void write(byte value) throws IOException { if (position == limit) { doFlush(); } buffer(value); } @Override public void writeInt32NoTag(int value) throws IOException { if (value >= 0) { writeUInt32NoTag(value); } else { // Must sign-extend. writeUInt64NoTag(value); } } @Override public void writeUInt32NoTag(int value) throws IOException { flushIfNotAvailable(MAX_VARINT32_SIZE); bufferUInt32NoTag(value); } @Override public void writeFixed32NoTag(final int value) throws IOException { flushIfNotAvailable(FIXED32_SIZE); bufferFixed32NoTag(value); } @Override public void writeUInt64NoTag(long value) throws IOException { flushIfNotAvailable(MAX_VARINT_SIZE); bufferUInt64NoTag(value); } @Override public void writeFixed64NoTag(final long value) throws IOException { flushIfNotAvailable(FIXED64_SIZE); bufferFixed64NoTag(value); } @Override public void writeStringNoTag(String value) throws IOException { // UTF-8 byte length of the string is at least its UTF-16 code unit length (value.length()), // and at most 3 times of it. We take advantage of this in both branches below. final int maxLength = value.length() * Utf8.MAX_BYTES_PER_CHAR; final int maxLengthVarIntSize = computeUInt32SizeNoTag(maxLength); // If we are streaming and the potential length is too big to fit in our buffer, we take the // slower path. if (maxLengthVarIntSize + maxLength > limit) { // Allocate a byte[] that we know can fit the string and encode into it. String.getBytes() // does the same internally and then does *another copy* to return a byte[] of exactly the // right size. We can skip that copy and just writeRawBytes up to the actualLength of the // UTF-8 encoded bytes. final byte[] encodedBytes = new byte[maxLength]; int actualLength = Utf8.encode(value, encodedBytes, 0, maxLength); writeUInt32NoTag(actualLength); writeLazy(encodedBytes, 0, actualLength); return; } // Fast path: we have enough space available in our buffer for the string... if (maxLengthVarIntSize + maxLength > limit - position) { // Flush to free up space. doFlush(); } final int oldPosition = position; try { // Optimize for the case where we know this length results in a constant varint length as // this saves a pass for measuring the length of the string. final int minLengthVarIntSize = computeUInt32SizeNoTag(value.length()); if (minLengthVarIntSize == maxLengthVarIntSize) { position = oldPosition + minLengthVarIntSize; int newPosition = Utf8.encode(value, buffer, position, limit - position); // Since this class is stateful and tracks the position, we rewind and store the state, // prepend the length, then reset it back to the end of the string. position = oldPosition; int length = newPosition - oldPosition - minLengthVarIntSize; bufferUInt32NoTag(length); position = newPosition; totalBytesWritten += length; } else { int length = Utf8.encodedLength(value); bufferUInt32NoTag(length); position = Utf8.encode(value, buffer, position, length); totalBytesWritten += length; } } catch (UnpairedSurrogateException e) { // Roll back the change and convert to an IOException. totalBytesWritten -= position - oldPosition; position = oldPosition; // TODO: We should throw an IOException here instead. inefficientWriteStringNoTag(value, e); } catch (IndexOutOfBoundsException e) { throw new OutOfSpaceException(e); } } @Override public void flush() throws IOException { if (position > 0) { // Flush the buffer. doFlush(); } } @Override public void write(byte[] value, int offset, int length) throws IOException { flush(); out.write(value, offset, length); totalBytesWritten += length; } @Override public void writeLazy(byte[] value, int offset, int length) throws IOException { flush(); out.writeLazy(value, offset, length); totalBytesWritten += length; } @Override public void write(ByteBuffer value) throws IOException { flush(); int length = value.remaining(); out.write(value); totalBytesWritten += length; } @Override public void writeLazy(ByteBuffer value) throws IOException { flush(); int length = value.remaining(); out.writeLazy(value); totalBytesWritten += length; } private void flushIfNotAvailable(int requiredSize) throws IOException { if (limit - position < requiredSize) { doFlush(); } } private void doFlush() throws IOException { out.write(buffer, 0, position); position = 0; } } /** * An {@link CodedOutputStream} that decorates an {@link OutputStream}. It performs internal * buffering to optimize writes to the {@link OutputStream}. */ private static final class OutputStreamEncoder extends AbstractBufferedEncoder { private final OutputStream out; OutputStreamEncoder(OutputStream out, int bufferSize) { super(bufferSize); if (out == null) { throw new NullPointerException("out"); } this.out = out; } @Override public void writeTag(final int fieldNumber, final int wireType) throws IOException { writeUInt32NoTag(WireFormat.makeTag(fieldNumber, wireType)); } @Override public void writeInt32(final int fieldNumber, final int value) throws IOException { flushIfNotAvailable(MAX_VARINT_SIZE * 2); bufferTag(fieldNumber, WireFormat.WIRETYPE_VARINT); bufferInt32NoTag(value); } @Override public void writeUInt32(final int fieldNumber, final int value) throws IOException { flushIfNotAvailable(MAX_VARINT_SIZE * 2); bufferTag(fieldNumber, WireFormat.WIRETYPE_VARINT); bufferUInt32NoTag(value); } @Override public void writeFixed32(final int fieldNumber, final int value) throws IOException { flushIfNotAvailable(MAX_VARINT_SIZE + FIXED32_SIZE); bufferTag(fieldNumber, WireFormat.WIRETYPE_FIXED32); bufferFixed32NoTag(value); } @Override public void writeUInt64(final int fieldNumber, final long value) throws IOException { flushIfNotAvailable(MAX_VARINT_SIZE * 2); bufferTag(fieldNumber, WireFormat.WIRETYPE_VARINT); bufferUInt64NoTag(value); } @Override public void writeFixed64(final int fieldNumber, final long value) throws IOException { flushIfNotAvailable(MAX_VARINT_SIZE + FIXED64_SIZE); bufferTag(fieldNumber, WireFormat.WIRETYPE_FIXED64); bufferFixed64NoTag(value); } @Override public void writeBool(final int fieldNumber, final boolean value) throws IOException { flushIfNotAvailable(MAX_VARINT_SIZE + 1); bufferTag(fieldNumber, WireFormat.WIRETYPE_VARINT); buffer((byte) (value ? 1 : 0)); } @Override public void writeString(final int fieldNumber, final String value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeStringNoTag(value); } @Override public void writeBytes(final int fieldNumber, final ByteString value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeBytesNoTag(value); } @Override public void writeByteArray(final int fieldNumber, final byte[] value) throws IOException { writeByteArray(fieldNumber, value, 0, value.length); } @Override public void writeByteArray( final int fieldNumber, final byte[] value, final int offset, final int length) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeByteArrayNoTag(value, offset, length); } @Override public void writeByteBuffer(final int fieldNumber, final ByteBuffer value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeUInt32NoTag(value.capacity()); writeRawBytes(value); } @Override public void writeBytesNoTag(final ByteString value) throws IOException { writeUInt32NoTag(value.size()); value.writeTo(this); } @Override public void writeByteArrayNoTag(final byte[] value, int offset, int length) throws IOException { writeUInt32NoTag(length); write(value, offset, length); } @Override public void writeRawBytes(final ByteBuffer value) throws IOException { if (value.hasArray()) { write(value.array(), value.arrayOffset(), value.capacity()); } else { ByteBuffer duplicated = value.duplicate(); Java8Compatibility.clear(duplicated); write(duplicated); } } @Override public void writeMessage(final int fieldNumber, final MessageLite value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeMessageNoTag(value); } @Override void writeMessage(final int fieldNumber, final MessageLite value, Schema schema) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeMessageNoTag(value, schema); } @Override public void writeMessageSetExtension(final int fieldNumber, final MessageLite value) throws IOException { writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP); writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber); writeMessage(WireFormat.MESSAGE_SET_MESSAGE, value); writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP); } @Override public void writeRawMessageSetExtension(final int fieldNumber, final ByteString value) throws IOException { writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP); writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber); writeBytes(WireFormat.MESSAGE_SET_MESSAGE, value); writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP); } @Override public void writeMessageNoTag(final MessageLite value) throws IOException { writeUInt32NoTag(value.getSerializedSize()); value.writeTo(this); } @Override void writeMessageNoTag(final MessageLite value, Schema schema) throws IOException { writeUInt32NoTag(((AbstractMessageLite) value).getSerializedSize(schema)); schema.writeTo(value, wrapper); } @Override public void write(byte value) throws IOException { if (position == limit) { doFlush(); } buffer(value); } @Override public void writeInt32NoTag(int value) throws IOException { if (value >= 0) { writeUInt32NoTag(value); } else { // Must sign-extend. writeUInt64NoTag(value); } } @Override public void writeUInt32NoTag(int value) throws IOException { flushIfNotAvailable(MAX_VARINT32_SIZE); bufferUInt32NoTag(value); } @Override public void writeFixed32NoTag(final int value) throws IOException { flushIfNotAvailable(FIXED32_SIZE); bufferFixed32NoTag(value); } @Override public void writeUInt64NoTag(long value) throws IOException { flushIfNotAvailable(MAX_VARINT_SIZE); bufferUInt64NoTag(value); } @Override public void writeFixed64NoTag(final long value) throws IOException { flushIfNotAvailable(FIXED64_SIZE); bufferFixed64NoTag(value); } @Override public void writeStringNoTag(String value) throws IOException { try { // UTF-8 byte length of the string is at least its UTF-16 code unit length (value.length()), // and at most 3 times of it. We take advantage of this in both branches below. final int maxLength = value.length() * Utf8.MAX_BYTES_PER_CHAR; final int maxLengthVarIntSize = computeUInt32SizeNoTag(maxLength); // If we are streaming and the potential length is too big to fit in our buffer, we take the // slower path. if (maxLengthVarIntSize + maxLength > limit) { // Allocate a byte[] that we know can fit the string and encode into it. String.getBytes() // does the same internally and then does *another copy* to return a byte[] of exactly the // right size. We can skip that copy and just writeRawBytes up to the actualLength of the // UTF-8 encoded bytes. final byte[] encodedBytes = new byte[maxLength]; int actualLength = Utf8.encode(value, encodedBytes, 0, maxLength); writeUInt32NoTag(actualLength); writeLazy(encodedBytes, 0, actualLength); return; } // Fast path: we have enough space available in our buffer for the string... if (maxLengthVarIntSize + maxLength > limit - position) { // Flush to free up space. doFlush(); } // Optimize for the case where we know this length results in a constant varint length as // this saves a pass for measuring the length of the string. final int minLengthVarIntSize = computeUInt32SizeNoTag(value.length()); int oldPosition = position; final int length; try { if (minLengthVarIntSize == maxLengthVarIntSize) { position = oldPosition + minLengthVarIntSize; int newPosition = Utf8.encode(value, buffer, position, limit - position); // Since this class is stateful and tracks the position, we rewind and store the // state, prepend the length, then reset it back to the end of the string. position = oldPosition; length = newPosition - oldPosition - minLengthVarIntSize; bufferUInt32NoTag(length); position = newPosition; } else { length = Utf8.encodedLength(value); bufferUInt32NoTag(length); position = Utf8.encode(value, buffer, position, length); } totalBytesWritten += length; } catch (UnpairedSurrogateException e) { // Be extra careful and restore the original position for retrying the write with the // less efficient path. totalBytesWritten -= position - oldPosition; position = oldPosition; throw e; } catch (ArrayIndexOutOfBoundsException e) { throw new OutOfSpaceException(e); } } catch (UnpairedSurrogateException e) { inefficientWriteStringNoTag(value, e); } } @Override public void flush() throws IOException { if (position > 0) { // Flush the buffer. doFlush(); } } @Override public void write(byte[] value, int offset, int length) throws IOException { if (limit - position >= length) { // We have room in the current buffer. System.arraycopy(value, offset, buffer, position, length); position += length; totalBytesWritten += length; } else { // Write extends past current buffer. Fill the rest of this buffer and // flush. final int bytesWritten = limit - position; System.arraycopy(value, offset, buffer, position, bytesWritten); offset += bytesWritten; length -= bytesWritten; position = limit; totalBytesWritten += bytesWritten; doFlush(); // Now deal with the rest. // Since we have an output stream, this is our buffer // and buffer offset == 0 if (length <= limit) { // Fits in new buffer. System.arraycopy(value, offset, buffer, 0, length); position = length; } else { // Write is very big. Let's do it all at once. out.write(value, offset, length); } totalBytesWritten += length; } } @Override public void writeLazy(byte[] value, int offset, int length) throws IOException { write(value, offset, length); } @Override public void write(ByteBuffer value) throws IOException { int length = value.remaining(); if (limit - position >= length) { // We have room in the current buffer. value.get(buffer, position, length); position += length; totalBytesWritten += length; } else { // Write extends past current buffer. Fill the rest of this buffer and // flush. final int bytesWritten = limit - position; value.get(buffer, position, bytesWritten); length -= bytesWritten; position = limit; totalBytesWritten += bytesWritten; doFlush(); // Now deal with the rest. // Since we have an output stream, this is our buffer // and buffer offset == 0 while (length > limit) { // Copy data into the buffer before writing it to OutputStream. value.get(buffer, 0, limit); out.write(buffer, 0, limit); length -= limit; totalBytesWritten += limit; } value.get(buffer, 0, length); position = length; totalBytesWritten += length; } } @Override public void writeLazy(ByteBuffer value) throws IOException { write(value); } private void flushIfNotAvailable(int requiredSize) throws IOException { if (limit - position < requiredSize) { doFlush(); } } private void doFlush() throws IOException { out.write(buffer, 0, position); position = 0; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy