All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.telicent.smart.cache.sources.kafka.KafkaEventSource Maven / Gradle / Ivy

/**
 * Copyright (C) Telicent Ltd
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package io.telicent.smart.cache.sources.kafka;

import io.opentelemetry.api.common.Attributes;
import io.opentelemetry.api.metrics.DoubleHistogram;
import io.opentelemetry.api.metrics.LongHistogram;
import io.opentelemetry.api.metrics.Meter;
import io.opentelemetry.api.metrics.ObservableLongGauge;
import io.opentelemetry.semconv.SemanticAttributes;
import io.telicent.smart.cache.observability.TelicentMetrics;
import io.telicent.smart.cache.projectors.utils.PeriodicAction;
import io.telicent.smart.cache.sources.Event;
import io.telicent.smart.cache.sources.EventSourceException;
import io.telicent.smart.cache.sources.kafka.policies.KafkaReadPolicy;
import io.telicent.smart.cache.sources.offsets.OffsetStore;
import org.apache.commons.collections4.CollectionUtils;
import org.apache.commons.lang3.StringUtils;
import org.apache.kafka.clients.admin.AdminClient;
import org.apache.kafka.clients.admin.KafkaAdminClient;
import org.apache.kafka.clients.consumer.InvalidOffsetException;
import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.errors.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.lang.ref.WeakReference;
import java.time.Duration;
import java.util.*;
import java.util.concurrent.ConcurrentLinkedDeque;

/**
 * An event source backed by Kafka
 *
 * @param    Event key type
 * @param  Event value type
 */
public class KafkaEventSource
        extends AbstractBufferedEventSource, TKey, TValue> {

    /**
     * Creates a new builder for building a Kafka Event Source
     *
     * @param    Event key type
     * @param  Event value type
     * @return Builder
     */
    public static  Builder create() {
        return new Builder<>();
    }

    private static final Logger LOGGER = LoggerFactory.getLogger(KafkaEventSource.class);

    private final KafkaReadPolicy readPolicy;
    private final Consumer consumer;
    private final String server, consumerGroup;
    private final Set topics;
    private final int maxPollRecords;
    private boolean firstRun = true;
    private final TopicExistenceChecker topicExistenceChecker;
    private final boolean autoCommit;
    private final Map autoCommitOffsets = new HashMap<>();
    private final Queue> delayedOffsetCommits = new ConcurrentLinkedDeque<>();
    private final OffsetStore externalOffsetStore;
    private Thread pollThread = null;
    private final PeriodicAction positionLogger, lagWarning;
    private final Attributes metricAttributes;
    private final DoubleHistogram pollTimingMetric;
    private final LongHistogram fetchCountsMetric;
    private final ObservableLongGauge lagMetric;

    private Long lastObservedLag = null;

    /**
     * Creates a new event source backed by a Kafka topic
     *
     * @param bootstrapServers       Kafka Bootstrap servers
     * @param topics                 Kafka topic(s) to subscribe to
     * @param groupId                Kafka Consumer Group ID
     * @param keyDeserializerClass   Key deserializer class
     * @param valueDeserializerClass Value deserializer class
     * @param maxPollRecords         Maximum events to retrieve and buffer in one Kafka
     *                               {@link KafkaConsumer#poll(Duration)} request.
     * @param policy                 Kafka Read Policy to control what events to read from the configured topic
     * @param autoCommit             Whether the event source will automatically commit Kafka positions
     * @param offsetStore            An external offset store to commit offsets to in addition to committing them to
     *                               Kafka
     * @param lagReportInterval      Lag reporting interval
     * @param properties             Kafka Consumer Properties, these may be overwritten by explicit configuration
     *                               passed as other parameters
     */
    @SuppressWarnings("resource")
    KafkaEventSource(final String bootstrapServers, final Set topics, final String groupId,
                     final String keyDeserializerClass,
                     final String valueDeserializerClass, final int maxPollRecords,
                     final KafkaReadPolicy policy, final boolean autoCommit,
                     final OffsetStore offsetStore, final Duration lagReportInterval, final Properties properties) {
        if (StringUtils.isBlank(bootstrapServers)) {
            throw new IllegalArgumentException("Kafka bootstrapServers cannot be null");
        }
        if (CollectionUtils.isEmpty(topics)) {
            throw new IllegalArgumentException("Kafka topic(s) to read cannot be null");
        }
        if (StringUtils.isBlank(groupId)) {
            throw new IllegalArgumentException("Kafka Consumer groupID cannot be null");
        }
        if (StringUtils.isBlank(keyDeserializerClass)) {
            throw new IllegalArgumentException("Kafka keyDeserializerClass cannot be null");
        }
        if (StringUtils.isBlank(valueDeserializerClass)) {
            throw new IllegalArgumentException("Kafka valueDeserializerClass cannot be null");
        }
        if (maxPollRecords < 1) {
            throw new IllegalArgumentException("Kafka maxPollRecords must be >= 1");
        }
        Objects.requireNonNull(policy, "Kafka readPolicy cannot be null");
        // NB - Not validating lagReportInterval because that gets validated by the PeriodicAction constructor

        // Configure our Kafka consumer appropriately
        Properties props = new Properties();
        if (properties != null) {
            props.putAll(properties);
        }
        props.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
        props.setProperty(ConsumerConfig.GROUP_ID_CONFIG, groupId);
        props.setProperty(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
        props.setProperty(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, Integer.toString(maxPollRecords));
        props.setProperty(ConsumerConfig.MAX_PARTITION_FETCH_BYTES_CONFIG, Integer.toString(10 * 1024 * 1024));
        props.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, keyDeserializerClass);
        props.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, valueDeserializerClass);
        props.setProperty(ConsumerConfig.ALLOW_AUTO_CREATE_TOPICS_CONFIG, "false");

        // Allow the read policy to further configure the consumer configuration as needed
        policy.prepareConsumerConfiguration(props);

        Consumer consumer = createConsumer(props);
        this.consumer = consumer;
        this.server = bootstrapServers;
        this.consumerGroup = groupId;
        this.topics = new LinkedHashSet<>(topics);
        this.readPolicy = policy;
        this.readPolicy.setConsumer(this.consumer);
        this.maxPollRecords = maxPollRecords;
        this.autoCommit = autoCommit;
        this.externalOffsetStore = offsetStore;
        this.topicExistenceChecker = new TopicExistenceChecker(createAdminClient(props), this.server, this.topics, LOGGER);

        // Prepare metrics, for Messaging systems there are a bunch of predefined attributes we reuse
        this.metricAttributes = Attributes.of(SemanticAttributes.MESSAGING_KAFKA_CONSUMER_GROUP, groupId,
                                              SemanticAttributes.MESSAGING_OPERATION, "process",
                                              SemanticAttributes.MESSAGING_DESTINATION_NAME,
                                              StringUtils.join(topics, ","),
                                              SemanticAttributes.MESSAGING_SYSTEM, "kafka");
        Meter meter = TelicentMetrics.getMeter(Library.NAME);
        this.pollTimingMetric = meter.histogramBuilder(KafkaMetricNames.POLL_TIMING)
                                     .setDescription(KafkaMetricNames.POLL_TIMING_DESCRIPTION)
                                     .setUnit("seconds")
                                     .build();
        this.fetchCountsMetric = meter.histogramBuilder(KafkaMetricNames.FETCH_EVENTS_COUNT)
                                      .setDescription(KafkaMetricNames.FETCH_EVENTS_COUNT_DESCRIPTION)
                                      .ofLongs()
                                      .build();
        this.lagMetric = meter.gaugeBuilder(KafkaMetricNames.KAFKA_LAG)
                              .setDescription(KafkaMetricNames.LAG_DESCRIPTION)
                              .ofLongs()
                              .buildWithCallback(measure -> {
                                  if (this.lastObservedLag != null) {
                                      measure.record(this.lastObservedLag, this.metricAttributes);
                                  }
                              });

        // Prepare our periodic actions
        // We use one to log our current read positions, and thus lag, intermittently
        // And another to issue a warning when lag is very low i.e. when we are caught up, or close thereof
        this.positionLogger = new PeriodicAction(() -> {
            this.topics.forEach(topic -> this.readPolicy.logReadPositions(topic));
            this.lastObservedLag = this.remaining();
        }, lagReportInterval);
        this.lagWarning = new PeriodicAction(() -> topics.stream().map(topic -> {
            Long lag = readPolicy.currentLag(topic);
            if (lag != null && lag < maxPollRecords && lag > 0) {
                LOGGER.warn(
                        "Only able to buffer {} new events when configured to buffer a max of {} events.  Application performance is being reduced by a slower upstream producer writing to {}",
                        events.size(), maxPollRecords, topic);
                return true;
            }
            return false;
        }).anyMatch(result -> result), lagReportInterval);
    }

    /**
     * Creates the actual Kafka Admin Client used for the topic existence check
     * 

* An implementation may choose to return {@code null} in which case the topic existence check is disabled for this * event source. *

* * @param props Client configuration * @return Admin client, or {@code null} to disable functionality that depends on the admin client */ protected AdminClient createAdminClient(Properties props) { return KafkaAdminClient.create(props); } /** * Creates the actual Kafka consumer *

* This primarily exists for test purposes where it is useful to be able to introduce a * {@link org.apache.kafka.clients.consumer.MockConsumer} *

* * @param props Consumer configuration * @return Kafka consumer */ protected Consumer createConsumer(Properties props) { return new KafkaConsumer<>(props); } @Override public void close() { if (!this.closed) { if (this.autoCommit) { // Make sure that we have committed our offsets. When using Kafka's offset management functionality // this will let us resume processing from the correct offset the next time we are run. if (this.events.isEmpty()) { // If there's no buffered events we've consumed everything from our last poll() so can use Kafka's // no argument commitSync() method to just commit offsets based on our last poll() results this.consumer.commitSync(); } else { // Since we have some events buffered we cannot do a simple commitSync() since that would commit as // if we had processed all the buffered events, which we have not! // Instead, we need to do an explicit commit of the next offset(s) we were yet to process, we // automatically track these as the caller polls events from us, so we already know the offsets to // be committed. // Only gotcha here is have to remove any partitions that are no longer assigned to us as otherwise // the commit will fail. performOffsetCommits(this.autoCommitOffsets); } } // If there were any unprocessed delayed commits (because something called processed() from a background // thread) then commit those now processDelayedCommits(); // If using an external offset store update and close it now closeExternalOffsetStore(); // Stop events ONLY once we've done our commits (if any), otherwise attempting to do our commit operations // might actually result in us not committing anything as once events have been stopped the consumer doesn't // consider itself subscribed to anything and so may not commit any offsets! this.topics.forEach(topic -> this.readPolicy.stopEvents(topic)); // Close our topic existence checker as if we've been configured with non-existent topics we could have // in-flight checks that need terminating this.topicExistenceChecker.close(); // Close the underlying Kafka classes to release their network resources this.consumer.close(); } super.close(); } /** * Closes the external offset store, committing any outstanding offsets first. */ private void closeExternalOffsetStore() { if (this.externalOffsetStore != null) { try { this.performExternalOffsetStoreCommits(this.autoCommitOffsets); this.externalOffsetStore.close(); } catch (Throwable e) { LOGGER.warn("Failed to close external offset store {}: {}", this.externalOffsetStore.getClass().getCanonicalName(), e.getMessage()); } } } /** * Processes any delayed offset commits i.e. offset commits that happened on a different thread to the one that is * calling {@link #poll(Duration)} and thus effectively owns the underlying {@link KafkaConsumer}. This is * necessary because a {@link KafkaConsumer} isn't thread-safe as demonstrated by Issue 135 */ private void processDelayedCommits() { if (!this.delayedOffsetCommits.isEmpty()) { Map delayedCommits = this.delayedOffsetCommits.poll(); while (delayedCommits != null) { performOffsetCommits(delayedCommits); delayedCommits = this.delayedOffsetCommits.poll(); } } } /** * Called when the event source is attempting to commit offsets but determines it can't commit currently as the * relevant partitions are not currently assigned to us */ protected void noOffsetsToCommit() { LOGGER.warn("Unable to commit offsets as not currently assigned any relevant partitions"); } @Override protected Event decodeEvent(ConsumerRecord internalEvent) { processDelayedCommits(); if (internalEvent == null) { return null; } if (this.autoCommit) { // If we're auto-committing track the next event we would read for each partition so that we can // periodically commit our offsets // Remember Kafka wants us to commit the next offset to be read so have to add 1 to the offset of the record // we're currently reading this.autoCommitOffsets.put(new TopicPartition(internalEvent.topic(), internalEvent.partition()), new OffsetAndMetadata(internalEvent.offset() + 1)); } return new KafkaEvent<>(internalEvent, this); } @Override public Long remaining() { List onTopicRemaining = this.topics.stream().map(topic -> this.readPolicy.currentLag(topic)).toList(); if (onTopicRemaining.stream().allMatch(lag -> lag == null)) { // No topics reported their remaining total so can't report right now return null; } Long actualRemaining = onTopicRemaining.stream().filter(lag -> lag != null).reduce(0L, (a, b) -> a + b); return actualRemaining + events.size(); } /** * Tells the Kafka Event Source that the given events are now considered processed. *

* Calling this method causes the committed offsets for the topic partitions this event source is consuming events * from to be updated based upon the offsets in the processed events provided. *

*

* If this event source has been created with auto-commit disabled then this is the ONLY time that * the offsets will be committed. Generally you should either have auto-commit enabled and NEVER * call this method, or have auto-commit disabled in which case you MUST call this method as * appropriate. *

*

* If offsets are not committed, either automatically or via invoking this method, then upon application restart the * source will produce the same events the application has previously read. *

* * @param processedEvents A collection of events that have been processed. * @see io.telicent.smart.cache.sources.EventSource#processed(Collection) */ @Override public void processed(Collection processedEvents) { // Compute the maximum processed offset for each topic partitions Map commitOffsets = determineCommitOffsetsFromEvents(processedEvents); // If we're on a background thread committing offsets will fail so delay committing them instead if (this.pollThread != Thread.currentThread()) { this.delayedOffsetCommits.add(commitOffsets); } else { performOffsetCommits(commitOffsets); } } private void performOffsetCommits(Map commitOffsets) { // If we've been configured with an external offset store commit there first performExternalOffsetStoreCommits(commitOffsets); // If we are no longer assigned a given partition we aren't permitted to commit an offset for it commitOffsets.entrySet().removeIf(e -> !this.consumer.assignment().contains(e.getKey())); if (!commitOffsets.isEmpty()) { this.consumer.commitSync(commitOffsets); } else { noOffsetsToCommit(); } } private void performExternalOffsetStoreCommits(Map commitOffsets) { if (this.externalOffsetStore == null) { return; } try { for (Map.Entry offset : commitOffsets.entrySet()) { // Because many consumers can read from the same topic and partition need to make a unique key for // the offset store based on the topic, partition and consumer group String offsetKey = externalOffsetStoreKey(offset.getKey().topic(), offset.getKey().partition(), this.consumerGroup); this.externalOffsetStore.saveOffset(offsetKey, offset.getValue().offset()); } this.externalOffsetStore.flush(); } catch (Throwable e) { // Intentionally just ignoring and logging any errors from the external offset store LOGGER.warn("Configured external offset store {} failed to store offsets: {}", this.externalOffsetStore.getClass().getCanonicalName(), e.getMessage()); } } /** * Computes the key for use in storing an offset to an {@link OffsetStore} instance * * @param topic Kafka topic name * @param partition Topic partition * @param consumerGroup Consumer group ID * @return Offset Store key */ public static String externalOffsetStoreKey(String topic, int partition, String consumerGroup) { return String.format("%s-%d-%s", topic, partition, consumerGroup); } private static Map determineCommitOffsetsFromEvents(Collection events) { return determineCommitOffsetsFromRecords(events.stream() .filter(e -> e instanceof KafkaEvent) .map(e -> ((KafkaEvent) e).getConsumerRecord()) .toList()); } private static Map determineCommitOffsetsFromRecords( Collection records) { Map offsets = new HashMap<>(); for (ConsumerRecord record : records) { TopicPartition topicPartition = new TopicPartition(record.topic(), record.partition()); if (offsets.containsKey(topicPartition)) { offsets.computeIfPresent(topicPartition, (k, v) -> Math.max(v, record.offset())); } else { offsets.put(topicPartition, record.offset()); } } // Convert into actual offsets to commit to Kafka // Note that Kafka expects us to commit the offset of the next record we want to read, so we have to add 1 to // the maximum offset processed Map commitOffsets = new HashMap<>(); for (Map.Entry offset : offsets.entrySet()) { commitOffsets.put(offset.getKey(), new OffsetAndMetadata(offset.getValue() + 1)); } return commitOffsets; } @Override protected void bufferExhausted() { if (!firstRun) { // Once the buffer of events has been exhausted tell Kafka we've processed them // Don't do this on the first run since we won't have called KafkaConsumer.poll() yet so there's nothing to // commit if (this.autoCommit) { this.consumer.commitSync(); } } else { // This is the point where the consumer is actually connected to Kafka. It is intentionally delayed to the // first time the user calls poll() (and thus calls into this method) this.topics.forEach(topic -> this.readPolicy.startEvents(topic)); // Capture the current thread as only this thread will be able to commit offsets, see processed() and // processDelayedCommits() for more information this.pollThread = Thread.currentThread(); // Also add a shutdown hook that will explicitly interrupt the consumer, otherwise if we're currently // blocked on a poll() call to the underlying KafkaConsumer we'll block application shutdown up to the // callers provided timeout Runtime.getRuntime().addShutdownHook(new Thread(new Interrupter(this.consumer))); } this.firstRun = false; } @Override protected void tryFillBuffer(Duration timeout) { // Buffer up some more events ConsumerRecords records; try { // Don't do any work if none of the topic(s) exist on the Kafka cluster long start = System.currentTimeMillis(); if (!this.topicExistenceChecker.anyTopicExists(timeout)) return; // Reduce the timeout by the amount of time we spent waiting for the topic to exist as otherwise we // could wait twice our timeout and violate our API contract long elapsed = System.currentTimeMillis() - start; long remainingTime = timeout.toMillis() - elapsed; if (remainingTime <= 0) { return; } else { timeout = Duration.ofMillis(remainingTime); } // Perform the actual Kafka poll() and store the returned ConsumerRecord instances (if any) in our local // buffer Duration finalTimeout = timeout; records = TelicentMetrics.time(this.pollTimingMetric, this.metricAttributes, () -> this.consumer.poll(finalTimeout)); for (ConsumerRecord record : records) { events.add(record); } this.fetchCountsMetric.record(events.size(), this.metricAttributes); if (events.size() == 0) { LOGGER.debug("Currently no new events available for Kafka topic(s) {}", StringUtils.join(this.topics, ", ")); } else { LOGGER.debug("Buffered {} new events from Kafka topic(s) {}", events.size(), StringUtils.join(this.topics, ", ")); if (events.size() < this.maxPollRecords) { this.lagWarning.run(); } } this.positionLogger.run(); /* These errors are considered recoverable i.e. a subsequent call to this function could successfully fill the buffer */ } catch (WakeupException | InterruptException e) { LOGGER.debug("Interrupted/woken while polling Kafka for events"); /* The following errors are considered unrecoverable and result in an EventSourceException being thrown However, they do represent things that a user can potentially address e.g. Kafka auth settings, topic name etc. Therefore we provide specific logging and error messaging for these. */ } catch (InvalidOffsetException e) { LOGGER.error("Kafka Offset Invalid: {}", e.getMessage()); throw new EventSourceException("Invalid Kafka Offset", e); } catch (AuthenticationException | AuthorizationException e) { LOGGER.error("Kafka Security Error: {}", e.getMessage()); throw new EventSourceException("Kafka Security rejected the request", e); } catch (RecordDeserializationException e) { LOGGER.error("Kafka reported error deserializing record at offset {} in topic {}", e.offset(), e.topicPartition()); LOGGER.error("Kafka Deserialization Error: ", e); LOGGER.error( "Please inspect the Kafka topic {} to determine whether the record is genuinely malformed or if the deserializers are misconfigured", e.topicPartition()); throw new EventSourceException( String.format("Unable to deserialize Kafka record at offset %,d in topic %s.", e.offset(), e.topicPartition()), e); } catch (IllegalStateException e) { LOGGER.error("Not subscribed/assigned any Kafka topics: {}", e.getMessage()); throw new EventSourceException("Not subscribed/assigned to any Kafka topics", e); } catch (InvalidTopicException e) { LOGGER.error("Kafka Topic is invalid: {}", e.getMessage()); throw new EventSourceException("Invalid Kafka topic", e); } catch (Throwable e) { // Some other error encountered. // While there are other errors that Kafka explicitly says poll() might produce none of them represent // things that the user can do anything about LOGGER.error("Kafka Error: ", e); throw new EventSourceException(e); } } @Override public String toString() { return String.format("%s/%s", this.server, StringUtils.join(this.topics, ",")); } /** * A builder for Kafka event sources * * @param Key type * @param Value type */ public static class Builder extends AbstractKafkaEventSourceBuilder, Builder> { /** * Builders the event source * * @return Kafka Event Source */ @Override public KafkaEventSource build() { return new KafkaEventSource<>(this.bootstrapServers, this.topics, this.groupId, this.keyDeserializerClass, this.valueDeserializerClass, this.maxPollRecords, this.readPolicy, this.autoCommit, this.externalOffsetStore, this.lagReportInterval, this.properties); } } /** * A runnable that wakes up the consumer *

* This holds only a weak reference to the relevant instances such that we don't prevent their garbage collections * once they are no longer needed. However, we still retain the ability to interrupt them when application shutdown * is requested thus allowing our application to shut down in a timely fashion. *

*/ private static final class Interrupter implements Runnable { private static final Logger LOGGER = LoggerFactory.getLogger(Interrupter.class); private final WeakReference consumerReference; /** * Creates a new interrupter * * @param consumer Consumer to hold a weak reference to */ public Interrupter(Consumer consumer) { this.consumerReference = new WeakReference<>(consumer); } @Override public void run() { // Wake up the consumer if still valid Consumer consumer = this.consumerReference.get(); if (consumer != null) { LOGGER.warn("Interrupting the KafkaConsumer due to application shutdown"); consumer.wakeup(); } } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy