Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.trino.hive.formats.encodings.binary;
import com.google.common.math.IntMath;
import io.airlift.slice.Slice;
import io.airlift.slice.SliceOutput;
import io.trino.hive.formats.ReadWriteUtils;
import io.trino.hive.formats.encodings.ColumnData;
import io.trino.hive.formats.encodings.EncodeOutput;
import io.trino.plugin.base.type.DecodedTimestamp;
import io.trino.plugin.base.type.TrinoTimestampEncoder;
import io.trino.spi.block.Block;
import io.trino.spi.block.BlockBuilder;
import io.trino.spi.type.TimestampType;
import org.joda.time.DateTimeZone;
import java.util.function.BiFunction;
import static io.airlift.slice.SizeOf.SIZE_OF_INT;
import static io.trino.plugin.base.type.TrinoTimestampEncoderFactory.createTimestampEncoder;
import static io.trino.spi.type.Timestamps.MILLISECONDS_PER_SECOND;
import static java.util.Objects.requireNonNull;
public class TimestampEncoding
implements BinaryColumnEncoding
{
private final TimestampType type;
private final DateTimeZone timeZone;
private final TrinoTimestampEncoder> trinoTimestampEncoder;
public TimestampEncoding(TimestampType type, DateTimeZone timeZone)
{
this.type = requireNonNull(type, "type is null");
this.timeZone = requireNonNull(timeZone, "timeZone is null");
trinoTimestampEncoder = createTimestampEncoder(this.type, timeZone);
}
@Override
public void encodeColumn(Block block, SliceOutput output, EncodeOutput encodeOutput)
{
BiFunction factory = TimestampHolder.getFactory(type);
for (int position = 0; position < block.getPositionCount(); position++) {
if (!block.isNull(position)) {
writeTimestamp(output, factory.apply(block, position));
}
encodeOutput.closeEntry();
}
}
@Override
public void encodeValueInto(Block block, int position, SliceOutput output)
{
writeTimestamp(output, TimestampHolder.getFactory(type).apply(block, position));
}
@Override
public Block decodeColumn(ColumnData columnData)
{
int size = columnData.rowCount();
BlockBuilder builder = type.createBlockBuilder(null, size);
Slice slice = columnData.getSlice();
for (int i = 0; i < size; i++) {
int length = columnData.getLength(i);
if (length != 0) {
int offset = columnData.getOffset(i);
DecodedTimestamp decodedTimestamp = getTimestamp(slice, offset);
trinoTimestampEncoder.write(decodedTimestamp, builder);
}
else {
builder.appendNull();
}
}
return builder.build();
}
@Override
public int getValueOffset(Slice slice, int offset)
{
return 0;
}
@Override
public int getValueLength(Slice slice, int offset)
{
int length = 4;
if (hasNanosVInt(slice.getByte(offset))) {
int nanosVintLength = ReadWriteUtils.decodeVIntSize(slice, offset + 4);
length += nanosVintLength;
// is there extra data for "seconds"
if (ReadWriteUtils.isNegativeVInt(slice, offset + 4)) {
length += ReadWriteUtils.decodeVIntSize(slice, offset + 4 + nanosVintLength);
}
}
return length;
}
@Override
public void decodeValueInto(BlockBuilder builder, Slice slice, int offset, int length)
{
DecodedTimestamp decodedTimestamp = getTimestamp(slice, offset);
trinoTimestampEncoder.write(decodedTimestamp, builder);
}
private static boolean hasNanosVInt(byte b)
{
return (b >> 7) != 0;
}
private static DecodedTimestamp getTimestamp(Slice slice, int offset)
{
// read seconds (low 32 bits)
int lowest31BitsOfSecondsAndFlag = Integer.reverseBytes(slice.getInt(offset));
long seconds = lowest31BitsOfSecondsAndFlag & 0x7FFF_FFFF;
offset += SIZE_OF_INT;
int nanos = 0;
if (lowest31BitsOfSecondsAndFlag < 0) {
// read nanos
// this is an inline version of readVint, so it can be stitched together
// the code to read the seconds high bits below
byte nanosFirstByte = slice.getByte(offset);
int nanosLength = ReadWriteUtils.decodeVIntSize(nanosFirstByte);
nanos = (int) ReadWriteUtils.readVInt(slice, offset, nanosLength);
nanos = decodeNanos(nanos);
// read seconds (high 32 bits)
if (ReadWriteUtils.isNegativeVInt(nanosFirstByte)) {
// We compose the seconds field from two parts. The lowest 31 bits come from the first four
// bytes. The higher-order bits come from the second VInt that follows the nanos field.
long highBits = ReadWriteUtils.readVInt(slice, offset + nanosLength);
seconds |= (highBits << 31);
}
}
return new DecodedTimestamp(seconds, nanos);
}
@SuppressWarnings("NonReproducibleMathCall")
private static int decodeNanos(int nanos)
{
if (nanos < 0) {
// This means there is a second VInt present that specifies additional bits of the timestamp.
// The reversed nanoseconds value is still encoded in this VInt.
nanos = -nanos - 1;
}
int nanosDigits = (int) Math.floor(Math.log10(nanos)) + 1;
// Reverse the nanos digits (base 10)
int temp = 0;
while (nanos != 0) {
temp *= 10;
temp += nanos % 10;
nanos /= 10;
}
nanos = temp;
if (nanosDigits < 9) {
nanos *= IntMath.pow(10, 9 - nanosDigits);
}
return nanos;
}
private void writeTimestamp(SliceOutput output, TimestampHolder timestamp)
{
long millis = timeZone.convertLocalToUTC(timestamp.getSeconds() * MILLISECONDS_PER_SECOND, false);
long seconds = millis / MILLISECONDS_PER_SECOND;
int nanos = timestamp.getNanosOfSecond();
writeTimestamp(seconds, nanos, output);
}
private static void writeTimestamp(long seconds, int nanos, SliceOutput output)
{
// []
// seconds-low-32 is vint encoded
// nanos is reversed
// seconds-high-32 is vint encoded
// seconds-low-32 and nanos have the top bit set when second-high is present
boolean hasSecondsHigh32 = seconds < 0 || seconds > Integer.MAX_VALUE;
int nanosReversed = reverseDecimal(nanos);
int secondsLow32 = (int) seconds;
if (nanosReversed == 0 && !hasSecondsHigh32) {
secondsLow32 &= 0X7FFF_FFFF;
}
else {
secondsLow32 |= 0x8000_0000;
}
output.writeInt(Integer.reverseBytes(secondsLow32));
if (hasSecondsHigh32 || nanosReversed != 0) {
// The sign of the reversed-nanoseconds field indicates that there is a second VInt present
int value = hasSecondsHigh32 ? ~nanosReversed : nanosReversed;
ReadWriteUtils.writeVInt(output, value);
}
if (hasSecondsHigh32) {
int secondsHigh32 = (int) (seconds >> 31);
ReadWriteUtils.writeVInt(output, secondsHigh32);
}
}
private static int reverseDecimal(int nanos)
{
int decimal = 0;
if (nanos != 0) {
int counter = 0;
while (counter < 9) {
decimal *= 10;
decimal += nanos % 10;
nanos /= 10;
counter++;
}
}
return decimal;
}
}